Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxunsn Structured version   Visualization version   GIF version

Theorem iunxunsn 30807
Description: Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypothesis
Ref Expression
iunxunsn.1 (𝑥 = 𝑋𝐵 = 𝐶)
Assertion
Ref Expression
iunxunsn (𝑋𝑉 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = ( 𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunxunsn
StepHypRef Expression
1 iunxun 5019 . 2 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋}𝐵)
2 iunxunsn.1 . . . 4 (𝑥 = 𝑋𝐵 = 𝐶)
32iunxsng 5015 . . 3 (𝑋𝑉 𝑥 ∈ {𝑋}𝐵 = 𝐶)
43uneq2d 4093 . 2 (𝑋𝑉 → ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋}𝐵) = ( 𝑥𝐴 𝐵𝐶))
51, 4syl5eq 2791 1 (𝑋𝑉 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = ( 𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cun 3881  {csn 4558   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-v 3424  df-un 3888  df-sn 4559  df-iun 4923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator