| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxunsn | Structured version Visualization version GIF version | ||
| Description: Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| iunxunsn.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxunsn | ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxun 5075 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) | |
| 2 | iunxunsn.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 3 | 2 | iunxsng 5071 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ {𝑋}𝐵 = 𝐶) |
| 4 | 3 | uneq2d 4148 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
| 5 | 1, 4 | eqtrid 2783 | 1 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 {csn 4606 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-un 3936 df-sn 4607 df-iun 4974 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |