![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxunsn | Structured version Visualization version GIF version |
Description: Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
iunxunsn.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxunsn | ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxun 5087 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) | |
2 | iunxunsn.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5083 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ {𝑋}𝐵 = 𝐶) |
4 | 3 | uneq2d 4155 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
5 | 1, 4 | eqtrid 2776 | 1 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 {csn 4620 ∪ ciun 4987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-v 3468 df-un 3945 df-sn 4621 df-iun 4989 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |