Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxunsn | Structured version Visualization version GIF version |
Description: Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
iunxunsn.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxunsn | ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxun 5023 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) | |
2 | iunxunsn.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 5019 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ {𝑋}𝐵 = 𝐶) |
4 | 3 | uneq2d 4097 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
5 | 1, 4 | eqtrid 2790 | 1 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 {csn 4561 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-un 3892 df-sn 4562 df-iun 4926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |