Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxunsn | Structured version Visualization version GIF version |
Description: Appending a set to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
Ref | Expression |
---|---|
iunxunsn.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxunsn | ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunxun 5002 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) | |
2 | iunxunsn.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
3 | 2 | iunxsng 4998 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ {𝑋}𝐵 = 𝐶) |
4 | 3 | uneq2d 4077 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
5 | 1, 4 | syl5eq 2790 | 1 ⊢ (𝑋 ∈ 𝑉 → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∪ cun 3864 {csn 4541 ∪ ciun 4904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-v 3410 df-un 3871 df-sn 4542 df-iun 4906 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |