| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunxunpr | Structured version Visualization version GIF version | ||
| Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| Ref | Expression |
|---|---|
| iunxunsn.1 | ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
| iunxunpr.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) |
| Ref | Expression |
|---|---|
| iunxunpr | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ (𝐶 ∪ 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunxun 5061 | . 2 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋, 𝑌}𝐵) | |
| 2 | iunxunsn.1 | . . . 4 ⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) | |
| 3 | iunxunpr.2 | . . . 4 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐷) | |
| 4 | 2, 3 | iunxprg 5063 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ∪ 𝑥 ∈ {𝑋, 𝑌}𝐵 = (𝐶 ∪ 𝐷)) |
| 5 | 4 | uneq2d 4134 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (∪ 𝑥 ∈ 𝐴 𝐵 ∪ ∪ 𝑥 ∈ {𝑋, 𝑌}𝐵) = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ (𝐶 ∪ 𝐷))) |
| 6 | 1, 5 | eqtrid 2777 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → ∪ 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = (∪ 𝑥 ∈ 𝐴 𝐵 ∪ (𝐶 ∪ 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 {cpr 4594 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-un 3922 df-ss 3934 df-sn 4593 df-pr 4595 df-iun 4960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |