Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxunpr Structured version   Visualization version   GIF version

Theorem iunxunpr 32588
Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
iunxunsn.1 (𝑥 = 𝑋𝐵 = 𝐶)
iunxunpr.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
iunxunpr ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝑥,𝐷   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxunpr
StepHypRef Expression
1 iunxun 5099 . 2 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋, 𝑌}𝐵)
2 iunxunsn.1 . . . 4 (𝑥 = 𝑋𝐵 = 𝐶)
3 iunxunpr.2 . . . 4 (𝑥 = 𝑌𝐵 = 𝐷)
42, 3iunxprg 5101 . . 3 ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ {𝑋, 𝑌}𝐵 = (𝐶𝐷))
54uneq2d 4178 . 2 ((𝑋𝑉𝑌𝑊) → ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋, 𝑌}𝐵) = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
61, 5eqtrid 2787 1 ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cun 3961  {cpr 4633   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-v 3480  df-un 3968  df-ss 3980  df-sn 4632  df-pr 4634  df-iun 4998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator