Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunxunpr Structured version   Visualization version   GIF version

Theorem iunxunpr 31042
Description: Appending two sets to an indexed union. (Contributed by Thierry Arnoux, 20-Nov-2023.)
Hypotheses
Ref Expression
iunxunsn.1 (𝑥 = 𝑋𝐵 = 𝐶)
iunxunpr.2 (𝑥 = 𝑌𝐵 = 𝐷)
Assertion
Ref Expression
iunxunpr ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
Distinct variable groups:   𝑥,𝐶   𝑥,𝑋   𝑥,𝐷   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunxunpr
StepHypRef Expression
1 iunxun 5036 . 2 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋, 𝑌}𝐵)
2 iunxunsn.1 . . . 4 (𝑥 = 𝑋𝐵 = 𝐶)
3 iunxunpr.2 . . . 4 (𝑥 = 𝑌𝐵 = 𝐷)
42, 3iunxprg 5038 . . 3 ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ {𝑋, 𝑌}𝐵 = (𝐶𝐷))
54uneq2d 4108 . 2 ((𝑋𝑉𝑌𝑊) → ( 𝑥𝐴 𝐵 𝑥 ∈ {𝑋, 𝑌}𝐵) = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
61, 5eqtrid 2789 1 ((𝑋𝑉𝑌𝑊) → 𝑥 ∈ (𝐴 ∪ {𝑋, 𝑌})𝐵 = ( 𝑥𝐴 𝐵 ∪ (𝐶𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cun 3895  {cpr 4573   ciun 4937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3063  df-rex 3072  df-v 3443  df-un 3902  df-in 3904  df-ss 3914  df-sn 4572  df-pr 4574  df-iun 4939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator