Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxsng Structured version   Visualization version   GIF version

Theorem iunxsng 4978
 Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.)
Hypothesis
Ref Expression
iunxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4888 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 iunxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2838 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43rexsng 4572 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
51, 4syl5bb 286 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
65eqrdv 2757 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1539   ∈ wcel 2112  ∃wrex 3072  {csn 4523  ∪ ciun 4884 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2176  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-rex 3077  df-v 3412  df-sbc 3698  df-sn 4524  df-iun 4886 This theorem is referenced by:  iunxsn  4979  iunxprg  4984  iunxunsn  30429  disjiun2  42066  carageniuncllem1  43527  caratheodorylem1  43532
 Copyright terms: Public domain W3C validator