MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxsng Structured version   Visualization version   GIF version

Theorem iunxsng 5019
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.)
Hypothesis
Ref Expression
iunxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4928 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 iunxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2824 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43rexsng 4610 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
51, 4bitrid 282 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
65eqrdv 2736 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {csn 4561   ciun 4924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-v 3434  df-sn 4562  df-iun 4926
This theorem is referenced by:  iunxsn  5020  iunxprg  5025  iunxunsn  30906  disjiun2  42606  carageniuncllem1  44059  caratheodorylem1  44064
  Copyright terms: Public domain W3C validator