MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxsng Structured version   Visualization version   GIF version

Theorem iunxsng 5113
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.)
Hypothesis
Ref Expression
iunxsng.1 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
iunxsng (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem iunxsng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 5019 . . 3 (𝑦 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦𝐵)
2 iunxsng.1 . . . . 5 (𝑥 = 𝐴𝐵 = 𝐶)
32eleq2d 2830 . . . 4 (𝑥 = 𝐴 → (𝑦𝐵𝑦𝐶))
43rexsng 4698 . . 3 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑦𝐵𝑦𝐶))
51, 4bitrid 283 . 2 (𝐴𝑉 → (𝑦 𝑥 ∈ {𝐴}𝐵𝑦𝐶))
65eqrdv 2738 1 (𝐴𝑉 𝑥 ∈ {𝐴}𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  {csn 4648   ciun 5015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-sn 4649  df-iun 5017
This theorem is referenced by:  iunxsn  5114  iunxprg  5119  iunxunsn  32589  disjiun2  44960  carageniuncllem1  46442  caratheodorylem1  46447
  Copyright terms: Public domain W3C validator