Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxsng | Structured version Visualization version GIF version |
Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) |
Ref | Expression |
---|---|
iunxsng.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunxsng | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4925 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
2 | iunxsng.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
4 | 3 | rexsng 4607 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
5 | 1, 4 | syl5bb 282 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) |
6 | 5 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {csn 4558 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-sn 4559 df-iun 4923 |
This theorem is referenced by: iunxsn 5016 iunxprg 5021 iunxunsn 30807 disjiun2 42495 carageniuncllem1 43949 caratheodorylem1 43954 |
Copyright terms: Public domain | W3C validator |