| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxsng | Structured version Visualization version GIF version | ||
| Description: A singleton index picks out an instance of an indexed union's argument. (Contributed by Mario Carneiro, 25-Jun-2016.) |
| Ref | Expression |
|---|---|
| iunxsng.1 | ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunxsng | ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4962 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵) | |
| 2 | iunxsng.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 4 | 3 | rexsng 4643 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 5 | 1, 4 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑦 ∈ ∪ 𝑥 ∈ {𝐴}𝐵 ↔ 𝑦 ∈ 𝐶)) |
| 6 | 5 | eqrdv 2728 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {csn 4592 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-v 3452 df-sn 4593 df-iun 4960 |
| This theorem is referenced by: iunxsn 5058 iunxprg 5063 iunxunsn 32502 disjiun2 45059 carageniuncllem1 46526 caratheodorylem1 46531 |
| Copyright terms: Public domain | W3C validator |