| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxun | Structured version Visualization version GIF version | ||
| Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunxun | ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexun 4159 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4959 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4959 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 6 | eliun 4959 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
| 7 | elun 4116 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 9 | 8 | eqriv 2726 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3912 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3449 df-un 3919 df-iun 4957 |
| This theorem is referenced by: iunxdif3 5059 iunxprg 5060 iunsuc 6419 funiunfv 7222 iunfi 9294 kmlem11 10114 ackbij1lem9 10180 fsum2dlem 15736 fsumiun 15787 fprod2dlem 15946 prmreclem4 16890 fiuncmp 23291 ovolfiniun 25402 finiunmbl 25445 volfiniun 25448 voliunlem1 25451 uniioombllem4 25487 iuninc 32489 iunxunsn 32495 iunxunpr 32496 ofpreima2 32590 indval2 32777 esum2dlem 34082 sigaclfu2 34111 fiunelros 34164 measvuni 34204 cvmliftlem10 35281 mrsubvrs 35509 mblfinlem2 37652 dfrcl4 43665 iunrelexp0 43691 comptiunov2i 43695 corclrcl 43696 trclfvdecomr 43717 dfrtrcl4 43727 corcltrcl 43728 cotrclrcl 43731 fiiuncl 45059 iunp1 45060 sge0iunmptlemfi 46411 ovolval4lem1 46647 |
| Copyright terms: Public domain | W3C validator |