| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxun | Structured version Visualization version GIF version | ||
| Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunxun | ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexun 4147 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4945 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4945 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 6 | eliun 4945 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
| 7 | elun 4104 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 9 | 8 | eqriv 2726 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3901 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3438 df-un 3908 df-iun 4943 |
| This theorem is referenced by: iunxdif3 5044 iunxprg 5045 iunsuc 6394 funiunfv 7184 iunfi 9233 kmlem11 10055 ackbij1lem9 10121 fsum2dlem 15677 fsumiun 15728 fprod2dlem 15887 prmreclem4 16831 fiuncmp 23289 ovolfiniun 25400 finiunmbl 25443 volfiniun 25446 voliunlem1 25449 uniioombllem4 25485 iuninc 32509 iunxunsn 32515 iunxunpr 32516 ofpreima2 32617 indval2 32806 esum2dlem 34075 sigaclfu2 34104 fiunelros 34157 measvuni 34197 cvmliftlem10 35287 mrsubvrs 35515 mblfinlem2 37658 dfrcl4 43669 iunrelexp0 43695 comptiunov2i 43699 corclrcl 43700 trclfvdecomr 43721 dfrtrcl4 43731 corcltrcl 43732 cotrclrcl 43735 fiiuncl 45063 iunp1 45064 sge0iunmptlemfi 46414 ovolval4lem1 46650 |
| Copyright terms: Public domain | W3C validator |