| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxun | Structured version Visualization version GIF version | ||
| Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iunxun | ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexun 4155 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
| 2 | eliun 4955 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
| 3 | eliun 4955 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
| 4 | 2, 3 | orbi12i 914 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
| 5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 6 | eliun 4955 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
| 7 | elun 4112 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶)) |
| 9 | 8 | eqriv 2726 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∪ cun 3909 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-v 3446 df-un 3916 df-iun 4953 |
| This theorem is referenced by: iunxdif3 5054 iunxprg 5055 iunsuc 6407 funiunfv 7204 iunfi 9270 kmlem11 10090 ackbij1lem9 10156 fsum2dlem 15712 fsumiun 15763 fprod2dlem 15922 prmreclem4 16866 fiuncmp 23324 ovolfiniun 25435 finiunmbl 25478 volfiniun 25481 voliunlem1 25484 uniioombllem4 25520 iuninc 32539 iunxunsn 32545 iunxunpr 32546 ofpreima2 32640 indval2 32827 esum2dlem 34075 sigaclfu2 34104 fiunelros 34157 measvuni 34197 cvmliftlem10 35274 mrsubvrs 35502 mblfinlem2 37645 dfrcl4 43658 iunrelexp0 43684 comptiunov2i 43688 corclrcl 43689 trclfvdecomr 43710 dfrtrcl4 43720 corcltrcl 43721 cotrclrcl 43724 fiiuncl 45052 iunp1 45053 sge0iunmptlemfi 46404 ovolval4lem1 46640 |
| Copyright terms: Public domain | W3C validator |