![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxun | Structured version Visualization version GIF version |
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
Ref | Expression |
---|---|
iunxun | ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexun 4190 | . . . 4 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) | |
2 | eliun 5001 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
3 | eliun 5001 | . . . . 5 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
4 | 2, 3 | orbi12i 912 | . . . 4 ⊢ ((𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃𝑥 ∈ 𝐵 𝑦 ∈ 𝐶)) |
5 | 1, 4 | bitr4i 278 | . . 3 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶 ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) |
6 | eliun 5001 | . . 3 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 ∪ 𝐵)𝑦 ∈ 𝐶) | |
7 | elun 4148 | . . 3 ⊢ (𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) ↔ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶)) | |
8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 ↔ 𝑦 ∈ (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶)) |
9 | 8 | eqriv 2728 | 1 ⊢ ∪ 𝑥 ∈ (𝐴 ∪ 𝐵)𝐶 = (∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∪ cun 3946 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rex 3070 df-v 3475 df-un 3953 df-iun 4999 |
This theorem is referenced by: iunxdif3 5098 iunxprg 5099 iunsuc 6449 funiunfv 7250 iunfi 9346 kmlem11 10161 ackbij1lem9 10229 fsum2dlem 15723 fsumiun 15774 fprod2dlem 15931 prmreclem4 16859 fiuncmp 23228 ovolfiniun 25350 finiunmbl 25393 volfiniun 25396 voliunlem1 25399 uniioombllem4 25435 iuninc 32225 iunxunsn 32231 iunxunpr 32232 ofpreima2 32324 indval2 33476 esum2dlem 33554 sigaclfu2 33583 fiunelros 33636 measvuni 33676 cvmliftlem10 34749 mrsubvrs 34977 mblfinlem2 36990 dfrcl4 42890 iunrelexp0 42916 comptiunov2i 42920 corclrcl 42921 trclfvdecomr 42942 dfrtrcl4 42952 corcltrcl 42953 cotrclrcl 42956 fiiuncl 44214 iunp1 44215 sge0iunmptlemfi 45588 ovolval4lem1 45824 |
Copyright terms: Public domain | W3C validator |