MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxun Structured version   Visualization version   GIF version

Theorem iunxun 5053
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)

Proof of Theorem iunxun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rexun 4155 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
2 eliun 4955 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4955 . . . . 5 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
42, 3orbi12i 914 . . . 4 ((𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶) ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
51, 4bitr4i 278 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
6 eliun 4955 . . 3 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴𝐵)𝑦𝐶)
7 elun 4112 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶) ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
85, 6, 73bitr4i 303 . 2 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶))
98eqriv 2726 1 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wrex 3053  cun 3909   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-un 3916  df-iun 4953
This theorem is referenced by:  iunxdif3  5054  iunxprg  5055  iunsuc  6407  funiunfv  7204  iunfi  9270  kmlem11  10092  ackbij1lem9  10158  fsum2dlem  15713  fsumiun  15764  fprod2dlem  15923  prmreclem4  16867  fiuncmp  23325  ovolfiniun  25436  finiunmbl  25479  volfiniun  25482  voliunlem1  25485  uniioombllem4  25521  iuninc  32540  iunxunsn  32546  iunxunpr  32547  ofpreima2  32641  indval2  32828  esum2dlem  34076  sigaclfu2  34105  fiunelros  34158  measvuni  34198  cvmliftlem10  35275  mrsubvrs  35503  mblfinlem2  37646  dfrcl4  43659  iunrelexp0  43685  comptiunov2i  43689  corclrcl  43690  trclfvdecomr  43711  dfrtrcl4  43721  corcltrcl  43722  cotrclrcl  43725  fiiuncl  45053  iunp1  45054  sge0iunmptlemfi  46405  ovolval4lem1  46641
  Copyright terms: Public domain W3C validator