MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxun Structured version   Visualization version   GIF version

Theorem iunxun 5058
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)

Proof of Theorem iunxun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rexun 4159 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
2 eliun 4959 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4959 . . . . 5 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
42, 3orbi12i 914 . . . 4 ((𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶) ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
51, 4bitr4i 278 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
6 eliun 4959 . . 3 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴𝐵)𝑦𝐶)
7 elun 4116 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶) ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
85, 6, 73bitr4i 303 . 2 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶))
98eqriv 2726 1 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wrex 3053  cun 3912   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3449  df-un 3919  df-iun 4957
This theorem is referenced by:  iunxdif3  5059  iunxprg  5060  iunsuc  6419  funiunfv  7222  iunfi  9294  kmlem11  10114  ackbij1lem9  10180  fsum2dlem  15736  fsumiun  15787  fprod2dlem  15946  prmreclem4  16890  fiuncmp  23291  ovolfiniun  25402  finiunmbl  25445  volfiniun  25448  voliunlem1  25451  uniioombllem4  25487  iuninc  32489  iunxunsn  32495  iunxunpr  32496  ofpreima2  32590  indval2  32777  esum2dlem  34082  sigaclfu2  34111  fiunelros  34164  measvuni  34204  cvmliftlem10  35281  mrsubvrs  35509  mblfinlem2  37652  dfrcl4  43665  iunrelexp0  43691  comptiunov2i  43695  corclrcl  43696  trclfvdecomr  43717  dfrtrcl4  43727  corcltrcl  43728  cotrclrcl  43731  fiiuncl  45059  iunp1  45060  sge0iunmptlemfi  46411  ovolval4lem1  46647
  Copyright terms: Public domain W3C validator