MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxun Structured version   Visualization version   GIF version

Theorem iunxun 5053
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iunxun 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)

Proof of Theorem iunxun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rexun 4155 . . . 4 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
2 eliun 4955 . . . . 5 (𝑦 𝑥𝐴 𝐶 ↔ ∃𝑥𝐴 𝑦𝐶)
3 eliun 4955 . . . . 5 (𝑦 𝑥𝐵 𝐶 ↔ ∃𝑥𝐵 𝑦𝐶)
42, 3orbi12i 914 . . . 4 ((𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶) ↔ (∃𝑥𝐴 𝑦𝐶 ∨ ∃𝑥𝐵 𝑦𝐶))
51, 4bitr4i 278 . . 3 (∃𝑥 ∈ (𝐴𝐵)𝑦𝐶 ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
6 eliun 4955 . . 3 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴𝐵)𝑦𝐶)
7 elun 4112 . . 3 (𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶) ↔ (𝑦 𝑥𝐴 𝐶𝑦 𝑥𝐵 𝐶))
85, 6, 73bitr4i 303 . 2 (𝑦 𝑥 ∈ (𝐴𝐵)𝐶𝑦 ∈ ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶))
98eqriv 2726 1 𝑥 ∈ (𝐴𝐵)𝐶 = ( 𝑥𝐴 𝐶 𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  wrex 3053  cun 3909   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3446  df-un 3916  df-iun 4953
This theorem is referenced by:  iunxdif3  5054  iunxprg  5055  iunsuc  6407  funiunfv  7204  iunfi  9270  kmlem11  10090  ackbij1lem9  10156  fsum2dlem  15712  fsumiun  15763  fprod2dlem  15922  prmreclem4  16866  fiuncmp  23324  ovolfiniun  25435  finiunmbl  25478  volfiniun  25481  voliunlem1  25484  uniioombllem4  25520  iuninc  32539  iunxunsn  32545  iunxunpr  32546  ofpreima2  32640  indval2  32827  esum2dlem  34075  sigaclfu2  34104  fiunelros  34157  measvuni  34197  cvmliftlem10  35274  mrsubvrs  35502  mblfinlem2  37645  dfrcl4  43658  iunrelexp0  43684  comptiunov2i  43688  corclrcl  43689  trclfvdecomr  43710  dfrtrcl4  43720  corcltrcl  43721  cotrclrcl  43724  fiiuncl  45052  iunp1  45053  sge0iunmptlemfi  46404  ovolval4lem1  46640
  Copyright terms: Public domain W3C validator