Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrnmptss Structured version   Visualization version   GIF version

Theorem iunrnmptss 30319
Description: A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
iunrnmptss.1 (𝑦 = 𝐵𝐶 = 𝐷)
iunrnmptss.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iunrnmptss (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem iunrnmptss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3146 . . . 4 (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶))
2 iunrnmptss.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ralrimiva 3184 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 eqid 2823 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54elrnmptg 5833 . . . . . . . 8 (∀𝑥𝐴 𝐵𝑉 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
63, 5syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
76anbi1d 631 . . . . . 6 (𝜑 → ((𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
87exbidv 1922 . . . . 5 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
9 r19.41v 3349 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶))
10 iunrnmptss.1 . . . . . . . . . 10 (𝑦 = 𝐵𝐶 = 𝐷)
1110eleq2d 2900 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑧𝐶𝑧𝐷))
1211biimpa 479 . . . . . . . 8 ((𝑦 = 𝐵𝑧𝐶) → 𝑧𝐷)
1312reximi 3245 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
149, 13sylbir 237 . . . . . 6 ((∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
1514exlimiv 1931 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
168, 15syl6bi 255 . . . 4 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷))
171, 16syl5bi 244 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∃𝑥𝐴 𝑧𝐷))
1817ss2abdv 4046 . 2 (𝜑 → {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶} ⊆ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷})
19 df-iun 4923 . 2 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 = {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶}
20 df-iun 4923 . 2 𝑥𝐴 𝐷 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷}
2118, 19, 203sstr4g 4014 1 (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2801  wral 3140  wrex 3141  wss 3938   ciun 4921  cmpt 5148  ran crn 5558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-cnv 5565  df-dm 5567  df-rn 5568
This theorem is referenced by:  fnpreimac  30418
  Copyright terms: Public domain W3C validator