Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrnmptss Structured version   Visualization version   GIF version

Theorem iunrnmptss 32064
Description: A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
iunrnmptss.1 (𝑦 = 𝐵𝐶 = 𝐷)
iunrnmptss.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iunrnmptss (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem iunrnmptss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3069 . . . 4 (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶))
2 iunrnmptss.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ralrimiva 3144 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 eqid 2730 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54elrnmptg 5957 . . . . . . . 8 (∀𝑥𝐴 𝐵𝑉 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
63, 5syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
76anbi1d 628 . . . . . 6 (𝜑 → ((𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
87exbidv 1922 . . . . 5 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
9 r19.41v 3186 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶))
10 iunrnmptss.1 . . . . . . . . . 10 (𝑦 = 𝐵𝐶 = 𝐷)
1110eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑧𝐶𝑧𝐷))
1211biimpa 475 . . . . . . . 8 ((𝑦 = 𝐵𝑧𝐶) → 𝑧𝐷)
1312reximi 3082 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
149, 13sylbir 234 . . . . . 6 ((∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
1514exlimiv 1931 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
168, 15syl6bi 252 . . . 4 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷))
171, 16biimtrid 241 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∃𝑥𝐴 𝑧𝐷))
1817ss2abdv 4059 . 2 (𝜑 → {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶} ⊆ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷})
19 df-iun 4998 . 2 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 = {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶}
20 df-iun 4998 . 2 𝑥𝐴 𝐷 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷}
2118, 19, 203sstr4g 4026 1 (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wral 3059  wrex 3068  wss 3947   ciun 4996  cmpt 5230  ran crn 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-cnv 5683  df-dm 5685  df-rn 5686
This theorem is referenced by:  fnpreimac  32163
  Copyright terms: Public domain W3C validator