Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrnmptss Structured version   Visualization version   GIF version

Theorem iunrnmptss 30100
Description: A subset relation for an indexed union over the range of function expressed as a mapping. (Contributed by Thierry Arnoux, 27-Mar-2018.)
Hypotheses
Ref Expression
iunrnmptss.1 (𝑦 = 𝐵𝐶 = 𝐷)
iunrnmptss.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
iunrnmptss (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐶   𝑦,𝐷   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑦)   𝐷(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem iunrnmptss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-rex 3088 . . . 4 (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 ↔ ∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶))
2 iunrnmptss.2 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵𝑉)
32ralrimiva 3126 . . . . . . . 8 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 eqid 2772 . . . . . . . . 9 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
54elrnmptg 5671 . . . . . . . 8 (∀𝑥𝐴 𝐵𝑉 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
63, 5syl 17 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 𝑦 = 𝐵))
76anbi1d 620 . . . . . 6 (𝜑 → ((𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
87exbidv 1880 . . . . 5 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) ↔ ∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶)))
9 r19.41v 3282 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) ↔ (∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶))
10 iunrnmptss.1 . . . . . . . . . 10 (𝑦 = 𝐵𝐶 = 𝐷)
1110eleq2d 2845 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑧𝐶𝑧𝐷))
1211biimpa 469 . . . . . . . 8 ((𝑦 = 𝐵𝑧𝐶) → 𝑧𝐷)
1312reximi 3184 . . . . . . 7 (∃𝑥𝐴 (𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
149, 13sylbir 227 . . . . . 6 ((∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
1514exlimiv 1889 . . . . 5 (∃𝑦(∃𝑥𝐴 𝑦 = 𝐵𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷)
168, 15syl6bi 245 . . . 4 (𝜑 → (∃𝑦(𝑦 ∈ ran (𝑥𝐴𝐵) ∧ 𝑧𝐶) → ∃𝑥𝐴 𝑧𝐷))
171, 16syl5bi 234 . . 3 (𝜑 → (∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶 → ∃𝑥𝐴 𝑧𝐷))
1817ss2abdv 3928 . 2 (𝜑 → {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶} ⊆ {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷})
19 df-iun 4790 . 2 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 = {𝑧 ∣ ∃𝑦 ∈ ran (𝑥𝐴𝐵)𝑧𝐶}
20 df-iun 4790 . 2 𝑥𝐴 𝐷 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐷}
2118, 19, 203sstr4g 3896 1 (𝜑 𝑦 ∈ ran (𝑥𝐴𝐵)𝐶 𝑥𝐴 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1507  wex 1742  wcel 2050  {cab 2752  wral 3082  wrex 3083  wss 3823   ciun 4788  cmpt 5004  ran crn 5404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-sep 5056  ax-nul 5063  ax-pr 5182
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-cnv 5411  df-dm 5413  df-rn 5414
This theorem is referenced by:  fnpreimac  30192
  Copyright terms: Public domain W3C validator