![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixp0 | Structured version Visualization version GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10552. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2950 | . . . 4 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnal 3106 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
4 | 2, 3 | bitr3i 277 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
5 | ixpn0 8988 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
6 | 5 | necon1bi 2975 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
7 | 4, 6 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-dif 3979 df-nul 4353 df-ixp 8956 |
This theorem is referenced by: vonioo 46603 vonicc 46606 |
Copyright terms: Public domain | W3C validator |