MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0 Structured version   Visualization version   GIF version

Theorem ixp0 8929
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10482. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixp0 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)

Proof of Theorem ixp0
StepHypRef Expression
1 nne 2942 . . . 4 𝐵 ≠ ∅ ↔ 𝐵 = ∅)
21rexbii 3092 . . 3 (∃𝑥𝐴 ¬ 𝐵 ≠ ∅ ↔ ∃𝑥𝐴 𝐵 = ∅)
3 rexnal 3098 . . 3 (∃𝑥𝐴 ¬ 𝐵 ≠ ∅ ↔ ¬ ∀𝑥𝐴 𝐵 ≠ ∅)
42, 3bitr3i 276 . 2 (∃𝑥𝐴 𝐵 = ∅ ↔ ¬ ∀𝑥𝐴 𝐵 ≠ ∅)
5 ixpn0 8928 . . 3 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
65necon1bi 2967 . 2 (¬ ∀𝑥𝐴 𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = ∅)
74, 6sylbi 216 1 (∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wne 2938  wral 3059  wrex 3068  c0 4323  Xcixp 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-dif 3952  df-nul 4324  df-ixp 8896
This theorem is referenced by:  vonioo  45698  vonicc  45701
  Copyright terms: Public domain W3C validator