Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixp0 | Structured version Visualization version GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10170. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2946 | . . . 4 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 3177 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnal 3165 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
5 | ixpn0 8676 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
6 | 5 | necon1bi 2971 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
7 | 4, 6 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 ∅c0 4253 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-dif 3886 df-nul 4254 df-ixp 8644 |
This theorem is referenced by: vonioo 44110 vonicc 44113 |
Copyright terms: Public domain | W3C validator |