| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixp0 | Structured version Visualization version GIF version | ||
| Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10374. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2932 | . . . 4 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
| 2 | 1 | rexbii 3079 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
| 3 | rexnal 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
| 4 | 2, 3 | bitr3i 277 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 5 | ixpn0 8854 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
| 6 | 5 | necon1bi 2956 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| 7 | 4, 6 | sylbi 217 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ∅c0 4280 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-dif 3900 df-nul 4281 df-ixp 8822 |
| This theorem is referenced by: vonioo 46790 vonicc 46793 |
| Copyright terms: Public domain | W3C validator |