Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixp0 | Structured version Visualization version GIF version |
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 10332. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.) |
Ref | Expression |
---|---|
ixp0 | ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nne 2944 | . . . 4 ⊢ (¬ 𝐵 ≠ ∅ ↔ 𝐵 = ∅) | |
2 | 1 | rexbii 3093 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝐵 = ∅) |
3 | rexnal 3099 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝐵 ≠ ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
4 | 2, 3 | bitr3i 276 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
5 | ixpn0 8781 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
6 | 5 | necon1bi 2969 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
7 | 4, 6 | sylbi 216 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝐵 = ∅ → X𝑥 ∈ 𝐴 𝐵 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∅c0 4268 Xcixp 8748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-dif 3900 df-nul 4269 df-ixp 8749 |
This theorem is referenced by: vonioo 44546 vonicc 44549 |
Copyright terms: Public domain | W3C validator |