MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac9 Structured version   Visualization version   GIF version

Theorem ac9 9621
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac9 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac9
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ac6c4.1 . . . 4 𝐴 ∈ V
2 ac6c4.2 . . . 4 𝐵 ∈ V
31, 2ac6c4 9619 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 n0 4161 . . . 4 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
5 vex 3418 . . . . . 6 𝑓 ∈ V
65elixp 8183 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
76exbii 1949 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
84, 7bitr2i 268 . . 3 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ X𝑥𝐴 𝐵 ≠ ∅)
93, 8sylib 210 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → X𝑥𝐴 𝐵 ≠ ∅)
10 ixpn0 8208 . 2 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
119, 10impbii 201 1 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wa 386  wex 1880  wcel 2166  wne 3000  wral 3118  Vcvv 3415  c0 4145   Fn wfn 6119  cfv 6124  Xcixp 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-ac2 9601
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-wrecs 7673  df-recs 7735  df-ixp 8177  df-en 8224  df-card 9079  df-ac 9253
This theorem is referenced by:  konigthlem  9706
  Copyright terms: Public domain W3C validator