| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ac9 | Structured version Visualization version GIF version | ||
| Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.) |
| Ref | Expression |
|---|---|
| ac6c4.1 | ⊢ 𝐴 ∈ V |
| ac6c4.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ac9 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6c4.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | ac6c4.2 | . . . 4 ⊢ 𝐵 ∈ V | |
| 3 | 1, 2 | ac6c4 10503 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 4 | n0 4333 | . . . 4 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
| 5 | vex 3467 | . . . . . 6 ⊢ 𝑓 ∈ V | |
| 6 | 5 | elixp 8926 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 7 | 6 | exbii 1847 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
| 8 | 4, 7 | bitr2i 276 | . . 3 ⊢ (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 9 | 3, 8 | sylib 218 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| 10 | ixpn0 8952 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
| 11 | 9, 10 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3463 ∅c0 4313 Fn wfn 6536 ‘cfv 6541 Xcixp 8919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-ixp 8920 df-en 8968 df-card 9961 df-ac 10138 |
| This theorem is referenced by: konigthlem 10590 |
| Copyright terms: Public domain | W3C validator |