![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac9 | Structured version Visualization version GIF version |
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. (Contributed by Mario Carneiro, 22-Mar-2013.) |
Ref | Expression |
---|---|
ac6c4.1 | ⊢ 𝐴 ∈ V |
ac6c4.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ac9 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6c4.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ac6c4.2 | . . . 4 ⊢ 𝐵 ∈ V | |
3 | 1, 2 | ac6c4 10418 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
4 | n0 4307 | . . . 4 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵) | |
5 | vex 3450 | . . . . . 6 ⊢ 𝑓 ∈ V | |
6 | 5 | elixp 8843 | . . . . 5 ⊢ (𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
7 | 6 | exbii 1851 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) |
8 | 4, 7 | bitr2i 276 | . . 3 ⊢ (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
9 | 3, 8 | sylib 217 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ → X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
10 | ixpn0 8869 | . 2 ⊢ (X𝑥 ∈ 𝐴 𝐵 ≠ ∅ → ∀𝑥 ∈ 𝐴 𝐵 ≠ ∅) | |
11 | 9, 10 | impbii 208 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ≠ ∅ ↔ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ≠ wne 2944 ∀wral 3065 Vcvv 3446 ∅c0 4283 Fn wfn 6492 ‘cfv 6497 Xcixp 8836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-ac2 10400 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-ixp 8837 df-en 8885 df-card 9876 df-ac 10053 |
This theorem is referenced by: konigthlem 10505 |
Copyright terms: Public domain | W3C validator |