MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpssmap Structured version   Visualization version   GIF version

Theorem ixpssmap 8990
Description: An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
Hypothesis
Ref Expression
ixpssmap.2 𝐵 ∈ V
Assertion
Ref Expression
ixpssmap X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ixpssmap
StepHypRef Expression
1 ixpssmap.2 . . 3 𝐵 ∈ V
21rgenw 3071 . 2 𝑥𝐴 𝐵 ∈ V
3 ixpssmapg 8986 . 2 (∀𝑥𝐴 𝐵 ∈ V → X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
42, 3ax-mp 5 1 X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3067  Vcvv 3488  wss 3976   ciun 5015  (class class class)co 7448  m cmap 8884  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-ixp 8956
This theorem is referenced by:  hspmbl  46550
  Copyright terms: Public domain W3C validator