Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpssmap | Structured version Visualization version GIF version |
Description: An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
ixpssmap.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ixpssmap | ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssmap.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3065 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | ixpssmapg 8779 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
4 | 2, 3 | ax-mp 5 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∀wral 3061 Vcvv 3441 ⊆ wss 3897 ∪ ciun 4938 (class class class)co 7329 ↑m cmap 8678 Xcixp 8748 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-map 8680 df-ixp 8749 |
This theorem is referenced by: hspmbl 44493 |
Copyright terms: Public domain | W3C validator |