Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioo Structured version   Visualization version   GIF version

Theorem vonioo 42849
Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioo.x (𝜑𝑋 ∈ Fin)
vonioo.a (𝜑𝐴:𝑋⟶ℝ)
vonioo.b (𝜑𝐵:𝑋⟶ℝ)
vonioo.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioo.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonioo (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑘,𝐿   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑎,𝑏)

Proof of Theorem vonioo
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioo.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonioo.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6495 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 233 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonioo.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6495 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 233 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 42750 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2832 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6669 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonioo.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
17 ixpeq1 8466 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1816, 17eqtrd 2861 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1914, 18fveq12d 6676 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
2019adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
21 0fin 8740 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2826 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
24 ressxr 10679 . . . . . . . 8 ℝ ⊆ ℝ*
2524a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → ℝ ⊆ ℝ*)
266, 25fssd 6527 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ*)
2711, 25fssd 6527 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ*)
2822, 23, 26, 27ioovonmbl 42844 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘∅))
2928von0val 42838 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))) = 0)
3020, 29eqtrd 2861 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
31 fveq2 6669 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3231oveqd 7167 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3332adantl 482 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3413, 30, 333eqtr4d 2871 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
35 neqne 3029 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3635adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
37 nfv 1908 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
38 nfra1 3224 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)
3937, 38nfan 1893 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
402ffvelrnda 6849 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
417ffvelrnda 6849 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 volico 42153 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4340, 41, 42syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4443ad4ant14 748 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
45 rspa 3211 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
4645iftrued 4478 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4746adantll 710 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4844, 47eqtrd 2861 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4948ex 413 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
5039, 49ralrimi 3221 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
5150prodeq2d 15271 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
5251eqcomd 2832 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
53 fveq2 6669 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
54 fveq2 6669 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5553, 54breq12d 5076 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑗) < (𝐵𝑗)))
5655cbvralv 3458 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5756biimpi 217 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5857adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
59 vonioo.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
6059adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
6160adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ∈ Fin)
622adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
6362adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
647adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6564adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
66 simpr 485 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6766adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ≠ ∅)
6856, 45sylanbr 582 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
6968adantll 710 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
70 fveq2 6669 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
7170oveq1d 7165 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑚)))
7271cbvmptv 5166 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))
7372a1i 11 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
74 oveq2 7158 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7574oveq2d 7166 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑛)))
7675mpteq2dv 5159 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7773, 76eqtrd 2861 . . . . . . . 8 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7877cbvmptv 5166 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
79 nfcv 2982 . . . . . . . 8 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))
80 nfcv 2982 . . . . . . . . 9 𝑚𝑋
81 nffvmpt1 6680 . . . . . . . . . . 11 𝑚((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)
82 nfcv 2982 . . . . . . . . . . 11 𝑚𝑘
8381, 82nffv 6679 . . . . . . . . . 10 𝑚(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)
84 nfcv 2982 . . . . . . . . . 10 𝑚[,)
85 nfcv 2982 . . . . . . . . . 10 𝑚(𝐵𝑘)
8683, 84, 85nfov 7180 . . . . . . . . 9 𝑚((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
8780, 86nfixp 8475 . . . . . . . 8 𝑚X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
88 fveq2 6669 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛))
8988fveq1d 6671 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
9089oveq1d 7165 . . . . . . . . 9 (𝑚 = 𝑛 → ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9190ixpeq2dv 8471 . . . . . . . 8 (𝑚 = 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9279, 87, 91cbvmpt 5164 . . . . . . 7 (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9361, 63, 65, 67, 69, 15, 78, 92vonioolem2 42848 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
9458, 93syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
951, 60, 66, 62, 64hoidmvn0val 42751 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9695adantr 481 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9752, 94, 963eqtr4d 2871 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
98 rexnal 3243 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
9998bicomi 225 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
10099biimpi 217 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
101100adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
102 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ¬ (𝐴𝑘) < (𝐵𝑘))
10341adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
10440adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
105103, 104lenltd 10780 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ ¬ (𝐴𝑘) < (𝐵𝑘)))
106102, 105mpbird 258 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
107106ex 413 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) < (𝐵𝑘) → (𝐵𝑘) ≤ (𝐴𝑘)))
108107reximdva 3279 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
109108adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
110101, 109mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
111110adantlr 711 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
112 nfcv 2982 . . . . . . . . 9 𝑘(voln‘𝑋)
113 nfixp1 8476 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
11415, 113nfcxfr 2980 . . . . . . . . 9 𝑘𝐼
115112, 114nffv 6679 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
116 nfcv 2982 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
117115, 116nfeq 2996 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11859vonmea 42741 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
119118mea0 42621 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1201193ad2ant1 1127 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12115a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
122 simp2 1131 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝑘𝑋)
123 simp3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
12424, 40sseldi 3969 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
1251243adant3 1126 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴𝑘) ∈ ℝ*)
12624, 41sseldi 3969 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
1271263adant3 1126 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ∈ ℝ*)
128 ioo0 12758 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
129125, 127, 128syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
130123, 129mpbird 258 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
131 rspe 3309 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)(,)(𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
132122, 130, 131syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
133 ixp0 8489 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
134132, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
135121, 134eqtrd 2861 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = ∅)
136135fveq2d 6673 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
137 ne0i 4304 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
138137adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
139138, 95syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1401393adant3 1126 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
141 eleq1w 2900 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
142 fveq2 6669 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
143142, 70breq12d 5076 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
144141, 1433anbi23d 1432 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘))))
145144imbi1d 343 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
146 nfv 1908 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
147593ad2ant1 1127 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
148 volicore 42748 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
14940, 41, 148syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
150149recnd 10663 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1511503ad2antl1 1179 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
152 simp2 1131 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
15353, 54oveq12d 7168 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
154153fveq2d 6673 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
155154adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1562ffvelrnda 6849 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1577ffvelrnda 6849 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
158 volico 42153 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
159156, 157, 158syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1601593adant3 1126 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
161 simp3 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
162157, 156lenltd 10780 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
1631623adant3 1126 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
164161, 163mpbid 233 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
165164iffalsed 4481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
166160, 165eqtrd 2861 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
167166adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168155, 167eqtrd 2861 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
169146, 147, 151, 152, 168fprodeq0g 15343 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170145, 169chvarv 2410 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171140, 170eqtrd 2861 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
172120, 136, 1713eqtr4d 2871 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1731723exp 1113 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
174173adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17537, 117, 174rexlimd 3322 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
176175imp 407 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
177111, 176syldan 591 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17897, 177pm2.61dan 809 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17936, 178syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18034, 179pm2.61dan 809 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wral 3143  wrex 3144  wss 3940  c0 4295  ifcif 4470   class class class wbr 5063  cmpt 5143  dom cdm 5554  wf 6350  cfv 6354  (class class class)co 7150  cmpo 7152  m cmap 8401  Xcixp 8455  Fincfn 8503  cc 10529  cr 10530  0cc0 10531  1c1 10532   + caddc 10534  *cxr 10668   < clt 10669  cle 10670  cmin 10864   / cdiv 11291  cn 11632  (,)cioo 12733  [,)cico 12735  cprod 15254  volcvol 23998  volncvoln 42705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-disj 5029  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-omul 8103  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13425  df-hash 13686  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-rlim 14841  df-sum 15038  df-prod 15255  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-pws 16718  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18051  df-minusg 18052  df-sbg 18053  df-mulg 18170  df-subg 18221  df-ghm 18301  df-cntz 18392  df-cmn 18844  df-abl 18845  df-mgp 19176  df-ur 19188  df-ring 19235  df-cring 19236  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-dvr 19369  df-rnghom 19403  df-drng 19440  df-field 19441  df-subrg 19469  df-abv 19524  df-staf 19552  df-srng 19553  df-lmod 19572  df-lss 19640  df-lmhm 19730  df-lvec 19811  df-sra 19880  df-rgmod 19881  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-cnfld 20481  df-refld 20684  df-phl 20705  df-dsmm 20811  df-frlm 20826  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cn 21770  df-cnp 21771  df-cmp 21930  df-tx 22105  df-hmeo 22298  df-xms 22864  df-ms 22865  df-tms 22866  df-nm 23126  df-ngp 23127  df-tng 23128  df-nrg 23129  df-nlm 23130  df-cncf 23420  df-clm 23601  df-cph 23706  df-tcph 23707  df-rrx 23922  df-ovol 23999  df-vol 24000  df-salg 42479  df-sumge0 42530  df-mea 42617  df-ome 42657  df-caragen 42659  df-ovoln 42704  df-voln 42706
This theorem is referenced by:  vonn0ioo  42854
  Copyright terms: Public domain W3C validator