Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioo Structured version   Visualization version   GIF version

Theorem vonioo 43895
Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioo.x (𝜑𝑋 ∈ Fin)
vonioo.a (𝜑𝐴:𝑋⟶ℝ)
vonioo.b (𝜑𝐵:𝑋⟶ℝ)
vonioo.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioo.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonioo (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑘,𝐿   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑎,𝑏)

Proof of Theorem vonioo
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioo.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonioo.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6527 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonioo.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6527 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 43796 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2743 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6717 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonioo.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
17 ixpeq1 8589 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1816, 17eqtrd 2777 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1914, 18fveq12d 6724 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
2019adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
21 0fin 8849 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2737 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
24 ressxr 10877 . . . . . . . 8 ℝ ⊆ ℝ*
2524a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → ℝ ⊆ ℝ*)
266, 25fssd 6563 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ*)
2711, 25fssd 6563 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ*)
2822, 23, 26, 27ioovonmbl 43890 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘∅))
2928von0val 43884 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))) = 0)
3020, 29eqtrd 2777 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
31 fveq2 6717 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3231oveqd 7230 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3332adantl 485 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3413, 30, 333eqtr4d 2787 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
35 neqne 2948 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3635adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
37 nfv 1922 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
38 nfra1 3140 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)
3937, 38nfan 1907 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
402ffvelrnda 6904 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
417ffvelrnda 6904 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 volico 43199 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4340, 41, 42syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4443ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
45 rspa 3128 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
4645iftrued 4447 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4746adantll 714 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4844, 47eqtrd 2777 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4948ex 416 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
5039, 49ralrimi 3137 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
5150prodeq2d 15484 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
5251eqcomd 2743 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
53 fveq2 6717 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
54 fveq2 6717 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5553, 54breq12d 5066 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑗) < (𝐵𝑗)))
5655cbvralvw 3358 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5756biimpi 219 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5857adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
59 vonioo.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
6059adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
6160adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ∈ Fin)
622adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
6362adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
647adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6564adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
66 simpr 488 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6766adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ≠ ∅)
6856, 45sylanbr 585 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
6968adantll 714 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
70 fveq2 6717 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
7170oveq1d 7228 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑚)))
7271cbvmptv 5158 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))
7372a1i 11 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
74 oveq2 7221 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7574oveq2d 7229 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑛)))
7675mpteq2dv 5151 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7773, 76eqtrd 2777 . . . . . . . 8 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7877cbvmptv 5158 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
79 nfcv 2904 . . . . . . . 8 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))
80 nfcv 2904 . . . . . . . . 9 𝑚𝑋
81 nffvmpt1 6728 . . . . . . . . . . 11 𝑚((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)
82 nfcv 2904 . . . . . . . . . . 11 𝑚𝑘
8381, 82nffv 6727 . . . . . . . . . 10 𝑚(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)
84 nfcv 2904 . . . . . . . . . 10 𝑚[,)
85 nfcv 2904 . . . . . . . . . 10 𝑚(𝐵𝑘)
8683, 84, 85nfov 7243 . . . . . . . . 9 𝑚((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
8780, 86nfixpw 8597 . . . . . . . 8 𝑚X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
88 fveq2 6717 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛))
8988fveq1d 6719 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
9089oveq1d 7228 . . . . . . . . 9 (𝑚 = 𝑛 → ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9190ixpeq2dv 8594 . . . . . . . 8 (𝑚 = 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9279, 87, 91cbvmpt 5156 . . . . . . 7 (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9361, 63, 65, 67, 69, 15, 78, 92vonioolem2 43894 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
9458, 93syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
951, 60, 66, 62, 64hoidmvn0val 43797 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9695adantr 484 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9752, 94, 963eqtr4d 2787 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
98 rexnal 3160 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
9998bicomi 227 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
10099biimpi 219 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
101100adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
102 simpr 488 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ¬ (𝐴𝑘) < (𝐵𝑘))
10341adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
10440adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
105103, 104lenltd 10978 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ ¬ (𝐴𝑘) < (𝐵𝑘)))
106102, 105mpbird 260 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
107106ex 416 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) < (𝐵𝑘) → (𝐵𝑘) ≤ (𝐴𝑘)))
108107reximdva 3193 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
109108adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
110101, 109mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
111110adantlr 715 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
112 nfcv 2904 . . . . . . . . 9 𝑘(voln‘𝑋)
113 nfixp1 8599 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
11415, 113nfcxfr 2902 . . . . . . . . 9 𝑘𝐼
115112, 114nffv 6727 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
116 nfcv 2904 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
117115, 116nfeq 2917 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11859vonmea 43787 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
119118mea0 43667 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1201193ad2ant1 1135 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12115a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
122 simp2 1139 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝑘𝑋)
123 simp3 1140 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
12424, 40sseldi 3899 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
1251243adant3 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴𝑘) ∈ ℝ*)
12624, 41sseldi 3899 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
1271263adant3 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ∈ ℝ*)
128 ioo0 12960 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
129125, 127, 128syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
130123, 129mpbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
131 rspe 3223 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)(,)(𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
132122, 130, 131syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
133 ixp0 8612 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
134132, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
135121, 134eqtrd 2777 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = ∅)
136135fveq2d 6721 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
137 ne0i 4249 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
138137adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
139138, 95syldan 594 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1401393adant3 1134 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
141 eleq1w 2820 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
142 fveq2 6717 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
143142, 70breq12d 5066 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
144141, 1433anbi23d 1441 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘))))
145144imbi1d 345 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
146 nfv 1922 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
147593ad2ant1 1135 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
148 volicore 43794 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
14940, 41, 148syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
150149recnd 10861 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1511503ad2antl1 1187 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
152 simp2 1139 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
15353, 54oveq12d 7231 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
154153fveq2d 6721 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
155154adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1562ffvelrnda 6904 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1577ffvelrnda 6904 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
158 volico 43199 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
159156, 157, 158syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1601593adant3 1134 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
161 simp3 1140 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
162157, 156lenltd 10978 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
1631623adant3 1134 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
164161, 163mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
165164iffalsed 4450 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
166160, 165eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
167166adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168155, 167eqtrd 2777 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
169146, 147, 151, 152, 168fprodeq0g 15556 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170145, 169chvarvv 2007 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171140, 170eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
172120, 136, 1713eqtr4d 2787 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1731723exp 1121 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
174173adantr 484 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17537, 117, 174rexlimd 3236 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
176175imp 410 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
177111, 176syldan 594 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17897, 177pm2.61dan 813 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17936, 178syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18034, 179pm2.61dan 813 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  wral 3061  wrex 3062  wss 3866  c0 4237  ifcif 4439   class class class wbr 5053  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  m cmap 8508  Xcixp 8578  Fincfn 8626  cc 10727  cr 10728  0cc0 10729  1c1 10730   + caddc 10732  *cxr 10866   < clt 10867  cle 10868  cmin 11062   / cdiv 11489  cn 11830  (,)cioo 12935  [,)cico 12937  cprod 15467  volcvol 24360  volncvoln 43751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-omul 8207  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-pt 16949  df-prds 16952  df-pws 16954  df-xrs 17007  df-qtop 17012  df-imas 17013  df-xps 17015  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-rnghom 19735  df-drng 19769  df-field 19770  df-subrg 19798  df-abv 19853  df-staf 19881  df-srng 19882  df-lmod 19901  df-lss 19969  df-lmhm 20059  df-lvec 20140  df-sra 20209  df-rgmod 20210  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-refld 20567  df-phl 20588  df-dsmm 20694  df-frlm 20709  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-cn 22124  df-cnp 22125  df-cmp 22284  df-tx 22459  df-hmeo 22652  df-xms 23218  df-ms 23219  df-tms 23220  df-nm 23480  df-ngp 23481  df-tng 23482  df-nrg 23483  df-nlm 23484  df-cncf 23775  df-clm 23960  df-cph 24065  df-tcph 24066  df-rrx 24282  df-ovol 24361  df-vol 24362  df-salg 43525  df-sumge0 43576  df-mea 43663  df-ome 43703  df-caragen 43705  df-ovoln 43750  df-voln 43752
This theorem is referenced by:  vonn0ioo  43900
  Copyright terms: Public domain W3C validator