Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonioo Structured version   Visualization version   GIF version

Theorem vonioo 45857
Description: The n-dimensional Lebesgue measure of an open interval. This is the first statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonioo.x (𝜑𝑋 ∈ Fin)
vonioo.a (𝜑𝐴:𝑋⟶ℝ)
vonioo.b (𝜑𝐵:𝑋⟶ℝ)
vonioo.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
vonioo.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonioo (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑘,𝐿   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑎,𝑏)

Proof of Theorem vonioo
Dummy variables 𝑗 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonioo.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonioo.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6699 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonioo.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6699 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 45758 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2737 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6891 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonioo.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
17 ixpeq1 8908 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1816, 17eqtrd 2771 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)))
1914, 18fveq12d 6898 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
2019adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))))
21 0fin 9177 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2731 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
24 ressxr 11265 . . . . . . . 8 ℝ ⊆ ℝ*
2524a1i 11 . . . . . . 7 ((𝜑𝑋 = ∅) → ℝ ⊆ ℝ*)
266, 25fssd 6735 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ*)
2711, 25fssd 6735 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ*)
2822, 23, 26, 27ioovonmbl 45852 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘)) ∈ dom (voln‘∅))
2928von0val 45846 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)(,)(𝐵𝑘))) = 0)
3020, 29eqtrd 2771 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
31 fveq2 6891 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
3231oveqd 7429 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3332adantl 481 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3413, 30, 333eqtr4d 2781 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
35 neqne 2947 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3635adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
37 nfv 1916 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
38 nfra1 3280 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)
3937, 38nfan 1901 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
402ffvelcdmda 7086 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
417ffvelcdmda 7086 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
42 volico 45158 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4340, 41, 42syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4443ad4ant14 749 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
45 rspa 3244 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
4645iftrued 4536 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4746adantll 711 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) < (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4844, 47eqtrd 2771 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4948ex 412 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
5039, 49ralrimi 3253 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
5150prodeq2d 15873 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
5251eqcomd 2737 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
53 fveq2 6891 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
54 fveq2 6891 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5553, 54breq12d 5161 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) < (𝐵𝑘) ↔ (𝐴𝑗) < (𝐵𝑗)))
5655cbvralvw 3233 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5756biimpi 215 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
5857adantl 481 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗))
59 vonioo.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
6059adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
6160adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ∈ Fin)
622adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
6362adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
647adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6564adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
66 simpr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6766adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → 𝑋 ≠ ∅)
6856, 45sylanbr 581 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
6968adantll 711 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) < (𝐵𝑘))
70 fveq2 6891 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
7170oveq1d 7427 . . . . . . . . . . 11 (𝑗 = 𝑘 → ((𝐴𝑗) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑚)))
7271cbvmptv 5261 . . . . . . . . . 10 (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚)))
7372a1i 11 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))))
74 oveq2 7420 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7574oveq2d 7428 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐴𝑘) + (1 / 𝑚)) = ((𝐴𝑘) + (1 / 𝑛)))
7675mpteq2dv 5250 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7773, 76eqtrd 2771 . . . . . . . 8 (𝑚 = 𝑛 → (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
7877cbvmptv 5261 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐴𝑘) + (1 / 𝑛))))
79 nfcv 2902 . . . . . . . 8 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))
80 nfcv 2902 . . . . . . . . 9 𝑚𝑋
81 nffvmpt1 6902 . . . . . . . . . . 11 𝑚((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)
82 nfcv 2902 . . . . . . . . . . 11 𝑚𝑘
8381, 82nffv 6901 . . . . . . . . . 10 𝑚(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)
84 nfcv 2902 . . . . . . . . . 10 𝑚[,)
85 nfcv 2902 . . . . . . . . . 10 𝑚(𝐵𝑘)
8683, 84, 85nfov 7442 . . . . . . . . 9 𝑚((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
8780, 86nfixpw 8916 . . . . . . . 8 𝑚X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘))
88 fveq2 6891 . . . . . . . . . . 11 (𝑚 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛))
8988fveq1d 6893 . . . . . . . . . 10 (𝑚 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
9089oveq1d 7427 . . . . . . . . 9 (𝑚 = 𝑛 → ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9190ixpeq2dv 8913 . . . . . . . 8 (𝑚 = 𝑛X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘)) = X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9279, 87, 91cbvmpt 5259 . . . . . . 7 (𝑚 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑚)‘𝑘)[,)(𝐵𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐴𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)[,)(𝐵𝑘)))
9361, 63, 65, 67, 69, 15, 78, 92vonioolem2 45856 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) < (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
9458, 93syldan 590 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
951, 60, 66, 62, 64hoidmvn0val 45759 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9695adantr 480 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
9752, 94, 963eqtr4d 2781 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
98 rexnal 3099 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘))
9998bicomi 223 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
10099biimpi 215 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
101100adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘))
102 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ¬ (𝐴𝑘) < (𝐵𝑘))
10341adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
10440adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
105103, 104lenltd 11367 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → ((𝐵𝑘) ≤ (𝐴𝑘) ↔ ¬ (𝐴𝑘) < (𝐵𝑘)))
106102, 105mpbird 257 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) < (𝐵𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
107106ex 412 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) < (𝐵𝑘) → (𝐵𝑘) ≤ (𝐴𝑘)))
108107reximdva 3167 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
109108adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) < (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)))
110101, 109mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
111110adantlr 712 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘))
112 nfcv 2902 . . . . . . . . 9 𝑘(voln‘𝑋)
113 nfixp1 8918 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘))
11415, 113nfcxfr 2900 . . . . . . . . 9 𝑘𝐼
115112, 114nffv 6901 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
116 nfcv 2902 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
117115, 116nfeq 2915 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11859vonmea 45749 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
119118mea0 45629 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1201193ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12115a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)))
122 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝑘𝑋)
123 simp3 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ≤ (𝐴𝑘))
12424, 40sselid 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
1251243adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴𝑘) ∈ ℝ*)
12624, 41sselid 3980 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
1271263adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐵𝑘) ∈ ℝ*)
128 ioo0 13356 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
129125, 127, 128syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (((𝐴𝑘)(,)(𝐵𝑘)) = ∅ ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
130123, 129mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
131 rspe 3245 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)(,)(𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
132122, 130, 131syl2anc 583 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
133 ixp0 8931 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
134132, 133syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)(,)(𝐵𝑘)) = ∅)
135121, 134eqtrd 2771 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → 𝐼 = ∅)
136135fveq2d 6895 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
137 ne0i 4334 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
138137adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
139138, 95syldan 590 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1401393adant3 1131 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
141 eleq1w 2815 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
142 fveq2 6891 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
143142, 70breq12d 5161 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ (𝐵𝑘) ≤ (𝐴𝑘)))
144141, 1433anbi23d 1438 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘))))
145144imbi1d 341 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
146 nfv 1916 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗))
147593ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑋 ∈ Fin)
148 volicore 45756 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
14940, 41, 148syl2anc 583 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
150149recnd 11249 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1511503ad2antl1 1184 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
152 simp2 1136 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → 𝑗𝑋)
15353, 54oveq12d 7430 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
154153fveq2d 6895 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
155154adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1562ffvelcdmda 7086 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1577ffvelcdmda 7086 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
158 volico 45158 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
159156, 157, 158syl2anc 583 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1601593adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
161 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (𝐵𝑗) ≤ (𝐴𝑗))
162157, 156lenltd 11367 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
1631623adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ((𝐵𝑗) ≤ (𝐴𝑗) ↔ ¬ (𝐴𝑗) < (𝐵𝑗)))
164161, 163mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ¬ (𝐴𝑗) < (𝐵𝑗))
165164iffalsed 4539 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → if((𝐴𝑗) < (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
166160, 165eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
167166adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168155, 167eqtrd 2771 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
169146, 147, 151, 152, 168fprodeq0g 15945 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) ≤ (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170145, 169chvarvv 2001 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171140, 170eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
172120, 136, 1713eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1731723exp 1118 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
174173adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17537, 117, 174rexlimd 3262 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
176175imp 406 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) ≤ (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
177111, 176syldan 590 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) < (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17897, 177pm2.61dan 810 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17936, 178syldan 590 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18034, 179pm2.61dan 810 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wrex 3069  wss 3948  c0 4322  ifcif 4528   class class class wbr 5148  cmpt 5231  dom cdm 5676  wf 6539  cfv 6543  (class class class)co 7412  cmpo 7414  m cmap 8826  Xcixp 8897  Fincfn 8945  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119  *cxr 11254   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  (,)cioo 13331  [,)cico 13333  cprod 15856  volcvol 25312  volncvoln 45713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cc 10436  ax-ac2 10464  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195  ax-mulf 11196
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-omul 8477  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-dju 9902  df-card 9940  df-acn 9943  df-ac 10117  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-clim 15439  df-rlim 15440  df-sum 15640  df-prod 15857  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-pws 17402  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mulg 18994  df-subg 19046  df-ghm 19135  df-cntz 19229  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136  df-cring 20137  df-oppr 20232  df-dvdsr 20255  df-unit 20256  df-invr 20286  df-dvr 20299  df-rhm 20370  df-subrng 20442  df-subrg 20467  df-drng 20585  df-field 20586  df-abv 20656  df-staf 20684  df-srng 20685  df-lmod 20704  df-lss 20775  df-lmhm 20866  df-lvec 20947  df-sra 21019  df-rgmod 21020  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-cnfld 21234  df-refld 21468  df-phl 21489  df-dsmm 21597  df-frlm 21612  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cn 23051  df-cnp 23052  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-xms 24146  df-ms 24147  df-tms 24148  df-nm 24411  df-ngp 24412  df-tng 24413  df-nrg 24414  df-nlm 24415  df-cncf 24718  df-clm 24910  df-cph 25016  df-tcph 25017  df-rrx 25233  df-ovol 25313  df-vol 25314  df-salg 45484  df-sumge0 45538  df-mea 45625  df-ome 45665  df-caragen 45667  df-ovoln 45712  df-voln 45714
This theorem is referenced by:  vonn0ioo  45862
  Copyright terms: Public domain W3C validator