Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicc Structured version   Visualization version   GIF version

Theorem vonicc 43187
Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicc.x (𝜑𝑋 ∈ Fin)
vonicc.a (𝜑𝐴:𝑋⟶ℝ)
vonicc.b (𝜑𝐵:𝑋⟶ℝ)
vonicc.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicc.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonicc (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem vonicc
Dummy variables 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonicc.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonicc.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6484 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonicc.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6484 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 43085 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2830 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6658 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonicc.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
17 ixpeq1 8462 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1816, 17eqtrd 2859 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1914, 18fveq12d 6665 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
2019adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
21 0fin 8737 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2824 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
2422, 23, 6, 11iccvonmbl 43181 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)) ∈ dom (voln‘∅))
2524von0val 43173 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))) = 0)
2620, 25eqtrd 2859 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
27 fveq2 6658 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
2827oveqd 7162 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
2928adantl 485 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3013, 26, 293eqtr4d 2869 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
31 neqne 3022 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3231adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
33 nfv 1916 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
34 nfra1 3214 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)
3533, 34nfan 1901 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
362ffvelrnda 6839 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
377ffvelrnda 6839 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
38 volico2 43143 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
3936, 37, 38syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4039ad4ant14 751 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
41 rspa 3201 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4241iftrued 4457 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4342adantll 713 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4440, 43eqtrd 2859 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4544ex 416 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
4635, 45ralrimi 3211 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4746prodeq2d 15272 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
4847eqcomd 2830 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
49 fveq2 6658 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 fveq2 6658 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5149, 50breq12d 5065 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) ≤ (𝐵𝑘) ↔ (𝐴𝑗) ≤ (𝐵𝑗)))
5251cbvralvw 3435 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5352biimpi 219 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5453adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
55 vonicc.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
5655adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
5756adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ∈ Fin)
582adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
5958adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
607adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6160adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
62 simpr 488 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6362adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ≠ ∅)
6452, 41sylanbr 585 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
6564adantll 713 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
66 fveq2 6658 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
6766oveq1d 7160 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐵𝑗) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑚)))
6867cbvmptv 5155 . . . . . . . . 9 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))
6968mpteq2i 5144 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
70 oveq2 7153 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7170oveq2d 7161 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑛)))
7271mpteq2dv 5148 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7372cbvmptv 5155 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7469, 73eqtri 2847 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
75 fveq2 6658 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛))
7675fveq1d 6660 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
7776oveq2d 7161 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7877ixpeq2dv 8467 . . . . . . . 8 (𝑖 = 𝑛X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7978cbvmptv 5155 . . . . . . 7 (𝑖 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
8057, 59, 61, 63, 65, 15, 74, 79vonicclem2 43186 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
8154, 80syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
821, 56, 62, 58, 60hoidmvn0val 43086 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8382adantr 484 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8448, 81, 833eqtr4d 2869 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
85 rexnal 3233 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
8685bicomi 227 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8786biimpi 219 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8887adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
89 simpr 488 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ¬ (𝐴𝑘) ≤ (𝐵𝑘))
9037adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
9136adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
9290, 91ltnled 10779 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐵𝑘) < (𝐴𝑘) ↔ ¬ (𝐴𝑘) ≤ (𝐵𝑘)))
9389, 92mpbird 260 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) < (𝐴𝑘))
9493ex 416 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) ≤ (𝐵𝑘) → (𝐵𝑘) < (𝐴𝑘)))
9594reximdva 3267 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9695adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9788, 96mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
9897adantlr 714 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
99 nfcv 2982 . . . . . . . . 9 𝑘(voln‘𝑋)
100 nfixp1 8472 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
10115, 100nfcxfr 2980 . . . . . . . . 9 𝑘𝐼
10299, 101nffv 6668 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
103 nfcv 2982 . . . . . . . . 9 𝑘𝐴
104 nfcv 2982 . . . . . . . . . . . 12 𝑘Fin
105 nfcv 2982 . . . . . . . . . . . . 13 𝑘(ℝ ↑m 𝑥)
106 nfv 1916 . . . . . . . . . . . . . 14 𝑘 𝑥 = ∅
107 nfcv 2982 . . . . . . . . . . . . . 14 𝑘0
108 nfcv 2982 . . . . . . . . . . . . . . 15 𝑘𝑥
109108nfcprod1 15260 . . . . . . . . . . . . . 14 𝑘𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))
110106, 107, 109nfif 4478 . . . . . . . . . . . . 13 𝑘if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
111105, 105, 110nfmpo 7225 . . . . . . . . . . . 12 𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
112104, 111nfmpt 5149 . . . . . . . . . . 11 𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1131, 112nfcxfr 2980 . . . . . . . . . 10 𝑘𝐿
114 nfcv 2982 . . . . . . . . . 10 𝑘𝑋
115113, 114nffv 6668 . . . . . . . . 9 𝑘(𝐿𝑋)
116 nfcv 2982 . . . . . . . . 9 𝑘𝐵
117103, 115, 116nfov 7175 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
118102, 117nfeq 2995 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11955vonmea 43076 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
120119mea0 42956 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1211203ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12215a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
123 simp2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝑘𝑋)
124 simp3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐵𝑘) < (𝐴𝑘))
125 ressxr 10677 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
126125, 36sseldi 3950 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
127125, 37sseldi 3950 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
128 icc0 12779 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
129126, 127, 128syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
1301293adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
131124, 130mpbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
132 rspe 3297 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)[,](𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
133123, 131, 132syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
134 ixp0 8485 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
135133, 134syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
136122, 135eqtrd 2859 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = ∅)
137136fveq2d 6662 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
138 ne0i 4282 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
139138adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
140139, 82syldan 594 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1411403adant3 1129 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
142 eleq1w 2898 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
143 fveq2 6658 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
14466, 143breq12d 5065 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) < (𝐴𝑗) ↔ (𝐵𝑘) < (𝐴𝑘)))
145142, 1443anbi23d 1436 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘))))
146145imbi1d 345 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
147 nfv 1916 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗))
148553ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑋 ∈ Fin)
149 volicore 43083 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
15036, 37, 149syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
151150recnd 10661 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1521513ad2antl1 1182 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
153 simp2 1134 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑗𝑋)
15449, 50oveq12d 7163 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
155154fveq2d 6662 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
156155adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1572ffvelrnda 6839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1587ffvelrnda 6839 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
159 volico2 43143 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
160157, 158, 159syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1611603adant3 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
162 simp3 1135 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (𝐵𝑗) < (𝐴𝑗))
163158, 157ltnled 10779 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
1641633adant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
165162, 164mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ¬ (𝐴𝑗) ≤ (𝐵𝑗))
166165iffalsed 4460 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
167161, 166eqtrd 2859 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168167adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
169156, 168eqtrd 2859 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170147, 148, 152, 153, 169fprodeq0g 15344 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171146, 170chvarvv 2006 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
172141, 171eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
173121, 137, 1723eqtr4d 2869 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1741733exp 1116 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
175174adantr 484 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17633, 118, 175rexlimd 3310 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
177176imp 410 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17898, 177syldan 594 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17984, 178pm2.61dan 812 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18032, 179syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18130, 180pm2.61dan 812 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  c0 4275  ifcif 4449   class class class wbr 5052  cmpt 5132  dom cdm 5542  wf 6339  cfv 6343  (class class class)co 7145  cmpo 7147  m cmap 8396  Xcixp 8451  Fincfn 8499  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532  *cxr 10666   < clt 10667  cle 10668  cmin 10862   / cdiv 11289  cn 11630  [,)cico 12733  [,]cicc 12734  cprod 15255  volcvol 24063  volncvoln 43040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7399  df-om 7571  df-1st 7679  df-2nd 7680  df-supp 7821  df-tpos 7882  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-2o 8093  df-oadd 8096  df-omul 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8452  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-fsupp 8825  df-fi 8866  df-sup 8897  df-inf 8898  df-oi 8965  df-dju 9321  df-card 9359  df-acn 9362  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-4 11695  df-5 11696  df-6 11697  df-7 11698  df-8 11699  df-9 11700  df-n0 11891  df-z 11975  df-dec 12092  df-uz 12237  df-q 12342  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-fl 13162  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-rlim 14842  df-sum 15039  df-prod 15256  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-starv 16576  df-sca 16577  df-vsca 16578  df-ip 16579  df-tset 16580  df-ple 16581  df-ds 16583  df-unif 16584  df-hom 16585  df-cco 16586  df-rest 16692  df-topn 16693  df-0g 16711  df-gsum 16712  df-topgen 16713  df-pt 16714  df-prds 16717  df-pws 16719  df-xrs 16771  df-qtop 16776  df-imas 16777  df-xps 16779  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-ghm 18352  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-abv 19581  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20530  df-xmet 20531  df-met 20532  df-bl 20533  df-mopn 20534  df-cnfld 20539  df-refld 20742  df-phl 20763  df-dsmm 20869  df-frlm 20884  df-top 21495  df-topon 21512  df-topsp 21534  df-bases 21547  df-cn 21828  df-cnp 21829  df-cmp 21988  df-tx 22163  df-hmeo 22356  df-xms 22923  df-ms 22924  df-tms 22925  df-nm 23185  df-ngp 23186  df-tng 23187  df-nrg 23188  df-nlm 23189  df-cncf 23479  df-clm 23664  df-cph 23769  df-tcph 23770  df-rrx 23985  df-ovol 24064  df-vol 24065  df-salg 42814  df-sumge0 42865  df-mea 42952  df-ome 42992  df-caragen 42994  df-ovoln 43039  df-voln 43041
This theorem is referenced by:  vonn0icc  43190
  Copyright terms: Public domain W3C validator