Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicc Structured version   Visualization version   GIF version

Theorem vonicc 43324
Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicc.x (𝜑𝑋 ∈ Fin)
vonicc.a (𝜑𝐴:𝑋⟶ℝ)
vonicc.b (𝜑𝐵:𝑋⟶ℝ)
vonicc.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicc.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonicc (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem vonicc
Dummy variables 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonicc.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonicc.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6469 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonicc.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 484 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6469 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 485 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 235 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 43222 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2804 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6645 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonicc.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
17 ixpeq1 8455 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1816, 17eqtrd 2833 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1914, 18fveq12d 6652 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
2019adantl 485 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
21 0fin 8730 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2798 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
2422, 23, 6, 11iccvonmbl 43318 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)) ∈ dom (voln‘∅))
2524von0val 43310 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))) = 0)
2620, 25eqtrd 2833 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
27 fveq2 6645 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
2827oveqd 7152 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
2928adantl 485 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3013, 26, 293eqtr4d 2843 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
31 neqne 2995 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3231adantl 485 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
33 nfv 1915 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
34 nfra1 3183 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)
3533, 34nfan 1900 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
362ffvelrnda 6828 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
377ffvelrnda 6828 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
38 volico2 43280 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
3936, 37, 38syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4039ad4ant14 751 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
41 rspa 3171 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4241iftrued 4433 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4342adantll 713 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4440, 43eqtrd 2833 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4544ex 416 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
4635, 45ralrimi 3180 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4746prodeq2d 15268 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
4847eqcomd 2804 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
49 fveq2 6645 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 fveq2 6645 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5149, 50breq12d 5043 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) ≤ (𝐵𝑘) ↔ (𝐴𝑗) ≤ (𝐵𝑗)))
5251cbvralvw 3396 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5352biimpi 219 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5453adantl 485 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
55 vonicc.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
5655adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
5756adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ∈ Fin)
582adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
5958adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
607adantr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6160adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
62 simpr 488 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6362adantr 484 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ≠ ∅)
6452, 41sylanbr 585 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
6564adantll 713 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
66 fveq2 6645 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
6766oveq1d 7150 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐵𝑗) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑚)))
6867cbvmptv 5133 . . . . . . . . 9 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))
6968mpteq2i 5122 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
70 oveq2 7143 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7170oveq2d 7151 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑛)))
7271mpteq2dv 5126 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7372cbvmptv 5133 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7469, 73eqtri 2821 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
75 fveq2 6645 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛))
7675fveq1d 6647 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
7776oveq2d 7151 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7877ixpeq2dv 8460 . . . . . . . 8 (𝑖 = 𝑛X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7978cbvmptv 5133 . . . . . . 7 (𝑖 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
8057, 59, 61, 63, 65, 15, 74, 79vonicclem2 43323 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
8154, 80syldan 594 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
821, 56, 62, 58, 60hoidmvn0val 43223 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8382adantr 484 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8448, 81, 833eqtr4d 2843 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
85 rexnal 3201 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
8685bicomi 227 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8786biimpi 219 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8887adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
89 simpr 488 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ¬ (𝐴𝑘) ≤ (𝐵𝑘))
9037adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
9136adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
9290, 91ltnled 10776 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐵𝑘) < (𝐴𝑘) ↔ ¬ (𝐴𝑘) ≤ (𝐵𝑘)))
9389, 92mpbird 260 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) < (𝐴𝑘))
9493ex 416 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) ≤ (𝐵𝑘) → (𝐵𝑘) < (𝐴𝑘)))
9594reximdva 3233 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9695adantr 484 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9788, 96mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
9897adantlr 714 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
99 nfcv 2955 . . . . . . . . 9 𝑘(voln‘𝑋)
100 nfixp1 8465 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
10115, 100nfcxfr 2953 . . . . . . . . 9 𝑘𝐼
10299, 101nffv 6655 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
103 nfcv 2955 . . . . . . . . 9 𝑘𝐴
104 nfcv 2955 . . . . . . . . . . . 12 𝑘Fin
105 nfcv 2955 . . . . . . . . . . . . 13 𝑘(ℝ ↑m 𝑥)
106 nfv 1915 . . . . . . . . . . . . . 14 𝑘 𝑥 = ∅
107 nfcv 2955 . . . . . . . . . . . . . 14 𝑘0
108 nfcv 2955 . . . . . . . . . . . . . . 15 𝑘𝑥
109108nfcprod1 15256 . . . . . . . . . . . . . 14 𝑘𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))
110106, 107, 109nfif 4454 . . . . . . . . . . . . 13 𝑘if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
111105, 105, 110nfmpo 7215 . . . . . . . . . . . 12 𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
112104, 111nfmpt 5127 . . . . . . . . . . 11 𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1131, 112nfcxfr 2953 . . . . . . . . . 10 𝑘𝐿
114 nfcv 2955 . . . . . . . . . 10 𝑘𝑋
115113, 114nffv 6655 . . . . . . . . 9 𝑘(𝐿𝑋)
116 nfcv 2955 . . . . . . . . 9 𝑘𝐵
117103, 115, 116nfov 7165 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
118102, 117nfeq 2968 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11955vonmea 43213 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
120119mea0 43093 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1211203ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12215a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
123 simp2 1134 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝑘𝑋)
124 simp3 1135 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐵𝑘) < (𝐴𝑘))
125 ressxr 10674 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
126125, 36sseldi 3913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
127125, 37sseldi 3913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
128 icc0 12774 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
129126, 127, 128syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
1301293adant3 1129 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
131124, 130mpbird 260 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
132 rspe 3263 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)[,](𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
133123, 131, 132syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
134 ixp0 8478 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
135133, 134syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
136122, 135eqtrd 2833 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = ∅)
137136fveq2d 6649 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
138 ne0i 4250 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
139138adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
140139, 82syldan 594 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1411403adant3 1129 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
142 eleq1w 2872 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
143 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
14466, 143breq12d 5043 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) < (𝐴𝑗) ↔ (𝐵𝑘) < (𝐴𝑘)))
145142, 1443anbi23d 1436 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘))))
146145imbi1d 345 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
147 nfv 1915 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗))
148553ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑋 ∈ Fin)
149 volicore 43220 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
15036, 37, 149syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
151150recnd 10658 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1521513ad2antl1 1182 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
153 simp2 1134 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑗𝑋)
15449, 50oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
155154fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
156155adantl 485 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1572ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1587ffvelrnda 6828 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
159 volico2 43280 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
160157, 158, 159syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1611603adant3 1129 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
162 simp3 1135 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (𝐵𝑗) < (𝐴𝑗))
163158, 157ltnled 10776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
1641633adant3 1129 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
165162, 164mpbid 235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ¬ (𝐴𝑗) ≤ (𝐵𝑗))
166165iffalsed 4436 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
167161, 166eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168167adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
169156, 168eqtrd 2833 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170147, 148, 152, 153, 169fprodeq0g 15340 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171146, 170chvarvv 2005 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
172141, 171eqtrd 2833 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
173121, 137, 1723eqtr4d 2843 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1741733exp 1116 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
175174adantr 484 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17633, 118, 175rexlimd 3276 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
177176imp 410 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17898, 177syldan 594 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17984, 178pm2.61dan 812 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18032, 179syldan 594 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18130, 180pm2.61dan 812 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  c0 4243  ifcif 4425   class class class wbr 5030  cmpt 5110  dom cdm 5519  wf 6320  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Xcixp 8444  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  [,)cico 12728  [,]cicc 12729  cprod 15251  volcvol 24067  volncvoln 43177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-prod 15252  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-pws 16715  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-abv 19581  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-cnfld 20092  df-refld 20294  df-phl 20315  df-dsmm 20421  df-frlm 20436  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cn 21832  df-cnp 21833  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-xms 22927  df-ms 22928  df-tms 22929  df-nm 23189  df-ngp 23190  df-tng 23191  df-nrg 23192  df-nlm 23193  df-cncf 23483  df-clm 23668  df-cph 23773  df-tcph 23774  df-rrx 23989  df-ovol 24068  df-vol 24069  df-salg 42951  df-sumge0 43002  df-mea 43089  df-ome 43129  df-caragen 43131  df-ovoln 43176  df-voln 43178
This theorem is referenced by:  vonn0icc  43327
  Copyright terms: Public domain W3C validator