Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicc Structured version   Visualization version   GIF version

Theorem vonicc 46683
Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicc.x (𝜑𝑋 ∈ Fin)
vonicc.a (𝜑𝐴:𝑋⟶ℝ)
vonicc.b (𝜑𝐵:𝑋⟶ℝ)
vonicc.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicc.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonicc (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem vonicc
Dummy variables 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonicc.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonicc.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6667 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 232 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonicc.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 480 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6667 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 481 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 232 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 46581 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2735 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6858 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonicc.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
17 ixpeq1 8881 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1816, 17eqtrd 2764 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1914, 18fveq12d 6865 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
2019adantl 481 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
21 0fi 9013 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2729 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
2422, 23, 6, 11iccvonmbl 46677 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)) ∈ dom (voln‘∅))
2524von0val 46669 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))) = 0)
2620, 25eqtrd 2764 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
27 fveq2 6858 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
2827oveqd 7404 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
2928adantl 481 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3013, 26, 293eqtr4d 2774 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
31 neqne 2933 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3231adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
33 nfv 1914 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
34 nfra1 3261 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)
3533, 34nfan 1899 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
362ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
377ffvelcdmda 7056 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
38 volico2 46639 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
3936, 37, 38syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4039ad4ant14 752 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
41 rspa 3226 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4241iftrued 4496 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4342adantll 714 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4440, 43eqtrd 2764 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4544ex 412 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
4635, 45ralrimi 3235 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4746prodeq2d 15887 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
4847eqcomd 2735 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
49 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 fveq2 6858 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5149, 50breq12d 5120 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) ≤ (𝐵𝑘) ↔ (𝐴𝑗) ≤ (𝐵𝑗)))
5251cbvralvw 3215 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5352biimpi 216 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5453adantl 481 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
55 vonicc.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
5655adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
5756adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ∈ Fin)
582adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
5958adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
607adantr 480 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6160adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
62 simpr 484 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6362adantr 480 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ≠ ∅)
6452, 41sylanbr 582 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
6564adantll 714 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
66 fveq2 6858 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
6766oveq1d 7402 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐵𝑗) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑚)))
6867cbvmptv 5211 . . . . . . . . 9 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))
6968mpteq2i 5203 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
70 oveq2 7395 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7170oveq2d 7403 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑛)))
7271mpteq2dv 5201 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7372cbvmptv 5211 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7469, 73eqtri 2752 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
75 fveq2 6858 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛))
7675fveq1d 6860 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
7776oveq2d 7403 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7877ixpeq2dv 8886 . . . . . . . 8 (𝑖 = 𝑛X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7978cbvmptv 5211 . . . . . . 7 (𝑖 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
8057, 59, 61, 63, 65, 15, 74, 79vonicclem2 46682 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
8154, 80syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
821, 56, 62, 58, 60hoidmvn0val 46582 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8382adantr 480 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8448, 81, 833eqtr4d 2774 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
85 rexnal 3082 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
8685bicomi 224 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8786biimpi 216 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8887adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
89 simpr 484 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ¬ (𝐴𝑘) ≤ (𝐵𝑘))
9037adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
9136adantr 480 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
9290, 91ltnled 11321 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐵𝑘) < (𝐴𝑘) ↔ ¬ (𝐴𝑘) ≤ (𝐵𝑘)))
9389, 92mpbird 257 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) < (𝐴𝑘))
9493ex 412 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) ≤ (𝐵𝑘) → (𝐵𝑘) < (𝐴𝑘)))
9594reximdva 3146 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9695adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9788, 96mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
9897adantlr 715 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
99 nfcv 2891 . . . . . . . . 9 𝑘(voln‘𝑋)
100 nfixp1 8891 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
10115, 100nfcxfr 2889 . . . . . . . . 9 𝑘𝐼
10299, 101nffv 6868 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
103 nfcv 2891 . . . . . . . . 9 𝑘𝐴
104 nfcv 2891 . . . . . . . . . . . 12 𝑘Fin
105 nfcv 2891 . . . . . . . . . . . . 13 𝑘(ℝ ↑m 𝑥)
106 nfv 1914 . . . . . . . . . . . . . 14 𝑘 𝑥 = ∅
107 nfcv 2891 . . . . . . . . . . . . . 14 𝑘0
108 nfcv 2891 . . . . . . . . . . . . . . 15 𝑘𝑥
109108nfcprod1 15874 . . . . . . . . . . . . . 14 𝑘𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))
110106, 107, 109nfif 4519 . . . . . . . . . . . . 13 𝑘if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
111105, 105, 110nfmpo 7471 . . . . . . . . . . . 12 𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
112104, 111nfmpt 5205 . . . . . . . . . . 11 𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1131, 112nfcxfr 2889 . . . . . . . . . 10 𝑘𝐿
114 nfcv 2891 . . . . . . . . . 10 𝑘𝑋
115113, 114nffv 6868 . . . . . . . . 9 𝑘(𝐿𝑋)
116 nfcv 2891 . . . . . . . . 9 𝑘𝐵
117103, 115, 116nfov 7417 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
118102, 117nfeq 2905 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11955vonmea 46572 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
120119mea0 46452 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1211203ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12215a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
123 simp2 1137 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝑘𝑋)
124 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐵𝑘) < (𝐴𝑘))
125 ressxr 11218 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
126125, 36sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
127125, 37sselid 3944 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
128 icc0 13354 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
129126, 127, 128syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
1301293adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
131124, 130mpbird 257 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
132 rspe 3227 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)[,](𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
133123, 131, 132syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
134 ixp0 8904 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
135133, 134syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
136122, 135eqtrd 2764 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = ∅)
137136fveq2d 6862 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
138 ne0i 4304 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
139138adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
140139, 82syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1411403adant3 1132 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
142 eleq1w 2811 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
143 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
14466, 143breq12d 5120 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) < (𝐴𝑗) ↔ (𝐵𝑘) < (𝐴𝑘)))
145142, 1443anbi23d 1441 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘))))
146145imbi1d 341 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
147 nfv 1914 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗))
148553ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑋 ∈ Fin)
149 volicore 46579 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
15036, 37, 149syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
151150recnd 11202 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1521513ad2antl1 1186 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
153 simp2 1137 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑗𝑋)
15449, 50oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
155154fveq2d 6862 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
156155adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1572ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1587ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
159 volico2 46639 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
160157, 158, 159syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1611603adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
162 simp3 1138 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (𝐵𝑗) < (𝐴𝑗))
163158, 157ltnled 11321 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
1641633adant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
165162, 164mpbid 232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ¬ (𝐴𝑗) ≤ (𝐵𝑗))
166165iffalsed 4499 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
167161, 166eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168167adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
169156, 168eqtrd 2764 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170147, 148, 152, 153, 169fprodeq0g 15960 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171146, 170chvarvv 1989 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
172141, 171eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
173121, 137, 1723eqtr4d 2774 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1741733exp 1119 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
175174adantr 480 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17633, 118, 175rexlimd 3244 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
177176imp 406 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17898, 177syldan 591 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17984, 178pm2.61dan 812 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18032, 179syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18130, 180pm2.61dan 812 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  c0 4296  ifcif 4488   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  m cmap 8799  Xcixp 8870  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  [,)cico 13308  [,]cicc 13309  cprod 15869  volcvol 25364  volncvoln 46536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-prod 15870  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-pws 17412  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-field 20641  df-abv 20718  df-staf 20748  df-srng 20749  df-lmod 20768  df-lss 20838  df-lmhm 20929  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-refld 21514  df-phl 21535  df-dsmm 21641  df-frlm 21656  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-nm 24470  df-ngp 24471  df-tng 24472  df-nrg 24473  df-nlm 24474  df-cncf 24771  df-clm 24963  df-cph 25068  df-tcph 25069  df-rrx 25285  df-ovol 25365  df-vol 25366  df-salg 46307  df-sumge0 46361  df-mea 46448  df-ome 46488  df-caragen 46490  df-ovoln 46535  df-voln 46537
This theorem is referenced by:  vonn0icc  46686
  Copyright terms: Public domain W3C validator