Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicc Structured version   Visualization version   GIF version

Theorem vonicc 44204
Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicc.x (𝜑𝑋 ∈ Fin)
vonicc.a (𝜑𝐴:𝑋⟶ℝ)
vonicc.b (𝜑𝐵:𝑋⟶ℝ)
vonicc.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicc.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonicc (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem vonicc
Dummy variables 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonicc.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonicc.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6574 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonicc.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6574 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 44102 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2744 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6766 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonicc.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
17 ixpeq1 8683 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1816, 17eqtrd 2778 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1914, 18fveq12d 6773 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
2019adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
21 0fin 8941 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2738 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
2422, 23, 6, 11iccvonmbl 44198 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)) ∈ dom (voln‘∅))
2524von0val 44190 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))) = 0)
2620, 25eqtrd 2778 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
27 fveq2 6766 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
2827oveqd 7284 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
2928adantl 482 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3013, 26, 293eqtr4d 2788 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
31 neqne 2951 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3231adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
33 nfv 1917 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
34 nfra1 3143 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)
3533, 34nfan 1902 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
362ffvelrnda 6953 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
377ffvelrnda 6953 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
38 volico2 44160 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
3936, 37, 38syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4039ad4ant14 749 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
41 rspa 3131 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4241iftrued 4467 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4342adantll 711 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4440, 43eqtrd 2778 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4544ex 413 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
4635, 45ralrimi 3140 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4746prodeq2d 15642 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
4847eqcomd 2744 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
49 fveq2 6766 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 fveq2 6766 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5149, 50breq12d 5086 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) ≤ (𝐵𝑘) ↔ (𝐴𝑗) ≤ (𝐵𝑗)))
5251cbvralvw 3380 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5352biimpi 215 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5453adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
55 vonicc.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
5655adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
5756adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ∈ Fin)
582adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
5958adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
607adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6160adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
62 simpr 485 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6362adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ≠ ∅)
6452, 41sylanbr 582 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
6564adantll 711 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
66 fveq2 6766 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
6766oveq1d 7282 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐵𝑗) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑚)))
6867cbvmptv 5186 . . . . . . . . 9 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))
6968mpteq2i 5178 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
70 oveq2 7275 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7170oveq2d 7283 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑛)))
7271mpteq2dv 5175 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7372cbvmptv 5186 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7469, 73eqtri 2766 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
75 fveq2 6766 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛))
7675fveq1d 6768 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
7776oveq2d 7283 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7877ixpeq2dv 8688 . . . . . . . 8 (𝑖 = 𝑛X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7978cbvmptv 5186 . . . . . . 7 (𝑖 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
8057, 59, 61, 63, 65, 15, 74, 79vonicclem2 44203 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
8154, 80syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
821, 56, 62, 58, 60hoidmvn0val 44103 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8382adantr 481 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8448, 81, 833eqtr4d 2788 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
85 rexnal 3167 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
8685bicomi 223 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8786biimpi 215 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8887adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
89 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ¬ (𝐴𝑘) ≤ (𝐵𝑘))
9037adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
9136adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
9290, 91ltnled 11132 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐵𝑘) < (𝐴𝑘) ↔ ¬ (𝐴𝑘) ≤ (𝐵𝑘)))
9389, 92mpbird 256 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) < (𝐴𝑘))
9493ex 413 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) ≤ (𝐵𝑘) → (𝐵𝑘) < (𝐴𝑘)))
9594reximdva 3201 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9695adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9788, 96mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
9897adantlr 712 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
99 nfcv 2907 . . . . . . . . 9 𝑘(voln‘𝑋)
100 nfixp1 8693 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
10115, 100nfcxfr 2905 . . . . . . . . 9 𝑘𝐼
10299, 101nffv 6776 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
103 nfcv 2907 . . . . . . . . 9 𝑘𝐴
104 nfcv 2907 . . . . . . . . . . . 12 𝑘Fin
105 nfcv 2907 . . . . . . . . . . . . 13 𝑘(ℝ ↑m 𝑥)
106 nfv 1917 . . . . . . . . . . . . . 14 𝑘 𝑥 = ∅
107 nfcv 2907 . . . . . . . . . . . . . 14 𝑘0
108 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘𝑥
109108nfcprod1 15630 . . . . . . . . . . . . . 14 𝑘𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))
110106, 107, 109nfif 4489 . . . . . . . . . . . . 13 𝑘if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
111105, 105, 110nfmpo 7347 . . . . . . . . . . . 12 𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
112104, 111nfmpt 5180 . . . . . . . . . . 11 𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1131, 112nfcxfr 2905 . . . . . . . . . 10 𝑘𝐿
114 nfcv 2907 . . . . . . . . . 10 𝑘𝑋
115113, 114nffv 6776 . . . . . . . . 9 𝑘(𝐿𝑋)
116 nfcv 2907 . . . . . . . . 9 𝑘𝐵
117103, 115, 116nfov 7297 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
118102, 117nfeq 2920 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11955vonmea 44093 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
120119mea0 43973 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1211203ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12215a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
123 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝑘𝑋)
124 simp3 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐵𝑘) < (𝐴𝑘))
125 ressxr 11029 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
126125, 36sselid 3918 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
127125, 37sselid 3918 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
128 icc0 13137 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
129126, 127, 128syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
1301293adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
131124, 130mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
132 rspe 3235 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)[,](𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
133123, 131, 132syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
134 ixp0 8706 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
135133, 134syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
136122, 135eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = ∅)
137136fveq2d 6770 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
138 ne0i 4268 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
139138adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
140139, 82syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1411403adant3 1131 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
142 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
143 fveq2 6766 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
14466, 143breq12d 5086 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) < (𝐴𝑗) ↔ (𝐵𝑘) < (𝐴𝑘)))
145142, 1443anbi23d 1438 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘))))
146145imbi1d 342 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
147 nfv 1917 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗))
148553ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑋 ∈ Fin)
149 volicore 44100 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
15036, 37, 149syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
151150recnd 11013 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1521513ad2antl1 1184 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
153 simp2 1136 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑗𝑋)
15449, 50oveq12d 7285 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
155154fveq2d 6770 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
156155adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1572ffvelrnda 6953 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1587ffvelrnda 6953 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
159 volico2 44160 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
160157, 158, 159syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1611603adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
162 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (𝐵𝑗) < (𝐴𝑗))
163158, 157ltnled 11132 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
1641633adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
165162, 164mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ¬ (𝐴𝑗) ≤ (𝐵𝑗))
166165iffalsed 4470 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
167161, 166eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168167adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
169156, 168eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170147, 148, 152, 153, 169fprodeq0g 15714 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171146, 170chvarvv 2002 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
172141, 171eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
173121, 137, 1723eqtr4d 2788 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1741733exp 1118 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
175174adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17633, 118, 175rexlimd 3248 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
177176imp 407 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17898, 177syldan 591 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17984, 178pm2.61dan 810 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18032, 179syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18130, 180pm2.61dan 810 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  c0 4256  ifcif 4459   class class class wbr 5073  cmpt 5156  dom cdm 5584  wf 6422  cfv 6426  (class class class)co 7267  cmpo 7269  m cmap 8602  Xcixp 8672  Fincfn 8720  cc 10879  cr 10880  0cc0 10881  1c1 10882   + caddc 10884  *cxr 11018   < clt 11019  cle 11020  cmin 11215   / cdiv 11642  cn 11983  [,)cico 13091  [,]cicc 13092  cprod 15625  volcvol 24637  volncvoln 44057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-inf2 9386  ax-cc 10201  ax-ac2 10229  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5039  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-tpos 8029  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-2o 8285  df-oadd 8288  df-omul 8289  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-fi 9157  df-sup 9188  df-inf 9189  df-oi 9256  df-dju 9669  df-card 9707  df-acn 9710  df-ac 9882  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-q 12699  df-rp 12741  df-xneg 12858  df-xadd 12859  df-xmul 12860  df-ioo 13093  df-ico 13095  df-icc 13096  df-fz 13250  df-fzo 13393  df-fl 13522  df-seq 13732  df-exp 13793  df-hash 14055  df-cj 14820  df-re 14821  df-im 14822  df-sqrt 14956  df-abs 14957  df-clim 15207  df-rlim 15208  df-sum 15408  df-prod 15626  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-ip 16990  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-hom 16996  df-cco 16997  df-rest 17143  df-topn 17144  df-0g 17162  df-gsum 17163  df-topgen 17164  df-pt 17165  df-prds 17168  df-pws 17170  df-xrs 17223  df-qtop 17228  df-imas 17229  df-xps 17231  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-sbg 18592  df-mulg 18711  df-subg 18762  df-ghm 18842  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-oppr 19872  df-dvdsr 19893  df-unit 19894  df-invr 19924  df-dvr 19935  df-rnghom 19969  df-drng 20003  df-field 20004  df-subrg 20032  df-abv 20087  df-staf 20115  df-srng 20116  df-lmod 20135  df-lss 20204  df-lmhm 20294  df-lvec 20375  df-sra 20444  df-rgmod 20445  df-psmet 20599  df-xmet 20600  df-met 20601  df-bl 20602  df-mopn 20603  df-cnfld 20608  df-refld 20820  df-phl 20841  df-dsmm 20949  df-frlm 20964  df-top 22053  df-topon 22070  df-topsp 22092  df-bases 22106  df-cn 22388  df-cnp 22389  df-cmp 22548  df-tx 22723  df-hmeo 22916  df-xms 23483  df-ms 23484  df-tms 23485  df-nm 23748  df-ngp 23749  df-tng 23750  df-nrg 23751  df-nlm 23752  df-cncf 24051  df-clm 24236  df-cph 24342  df-tcph 24343  df-rrx 24559  df-ovol 24638  df-vol 24639  df-salg 43831  df-sumge0 43882  df-mea 43969  df-ome 44009  df-caragen 44011  df-ovoln 44056  df-voln 44058
This theorem is referenced by:  vonn0icc  44207
  Copyright terms: Public domain W3C validator