Step | Hyp | Ref
| Expression |
1 | | vonicc.l |
. . . . 5
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
2 | | vonicc.a |
. . . . . . 7
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
3 | 2 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:𝑋⟶ℝ) |
4 | | feq2 6574 |
. . . . . . 7
⊢ (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
5 | 4 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ)) |
6 | 3, 5 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴:∅⟶ℝ) |
7 | | vonicc.b |
. . . . . . 7
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
8 | 7 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵:𝑋⟶ℝ) |
9 | | feq2 6574 |
. . . . . . 7
⊢ (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ)) |
10 | 9 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ)) |
11 | 8, 10 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐵:∅⟶ℝ) |
12 | 1, 6, 11 | hoidmv0val 44102 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0) |
13 | 12 | eqcomd 2744 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵)) |
14 | | fveq2 6766 |
. . . . . 6
⊢ (𝑋 = ∅ →
(voln‘𝑋) =
(voln‘∅)) |
15 | | vonicc.i |
. . . . . . . 8
⊢ 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) |
16 | 15 | a1i 11 |
. . . . . . 7
⊢ (𝑋 = ∅ → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
17 | | ixpeq1 8683 |
. . . . . . 7
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = X𝑘 ∈ ∅ ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
18 | 16, 17 | eqtrd 2778 |
. . . . . 6
⊢ (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
19 | 14, 18 | fveq12d 6773 |
. . . . 5
⊢ (𝑋 = ∅ →
((voln‘𝑋)‘𝐼) =
((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
20 | 19 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈
∅ ((𝐴‘𝑘)[,](𝐵‘𝑘)))) |
21 | | 0fin 8941 |
. . . . . . 7
⊢ ∅
∈ Fin |
22 | 21 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈
Fin) |
23 | | eqid 2738 |
. . . . . 6
⊢ dom
(voln‘∅) = dom (voln‘∅) |
24 | 22, 23, 6, 11 | iccvonmbl 44198 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → X𝑘 ∈
∅ ((𝐴‘𝑘)[,](𝐵‘𝑘)) ∈ dom
(voln‘∅)) |
25 | 24 | von0val 44190 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) →
((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴‘𝑘)[,](𝐵‘𝑘))) = 0) |
26 | 20, 25 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0) |
27 | | fveq2 6766 |
. . . . 5
⊢ (𝑋 = ∅ → (𝐿‘𝑋) = (𝐿‘∅)) |
28 | 27 | oveqd 7284 |
. . . 4
⊢ (𝑋 = ∅ → (𝐴(𝐿‘𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵)) |
29 | 28 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → (𝐴(𝐿‘𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵)) |
30 | 13, 26, 29 | 3eqtr4d 2788 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
31 | | neqne 2951 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
32 | 31 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
33 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝜑 ∧ 𝑋 ≠ ∅) |
34 | | nfra1 3143 |
. . . . . . . . 9
⊢
Ⅎ𝑘∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) |
35 | 33, 34 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
36 | 2 | ffvelrnda 6953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
37 | 7 | ffvelrnda 6953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈ ℝ) |
38 | | volico2 44160 |
. . . . . . . . . . . 12
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) ≤ (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
39 | 36, 37, 38 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) ≤ (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
40 | 39 | ad4ant14 749 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = if((𝐴‘𝑘) ≤ (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0)) |
41 | | rspa 3131 |
. . . . . . . . . . . 12
⊢
((∀𝑘 ∈
𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
42 | 41 | iftrued 4467 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) ≤ (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
43 | 42 | adantll 711 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑋) → if((𝐴‘𝑘) ≤ (𝐵‘𝑘), ((𝐵‘𝑘) − (𝐴‘𝑘)), 0) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
44 | 40, 43 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
45 | 44 | ex 413 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (𝑘 ∈ 𝑋 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘)))) |
46 | 35, 45 | ralrimi 3140 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∀𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ((𝐵‘𝑘) − (𝐴‘𝑘))) |
47 | 46 | prodeq2d 15642 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
48 | 47 | eqcomd 2744 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
49 | | fveq2 6766 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐴‘𝑘) = (𝐴‘𝑗)) |
50 | | fveq2 6766 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑗 → (𝐵‘𝑘) = (𝐵‘𝑗)) |
51 | 49, 50 | breq12d 5086 |
. . . . . . . . 9
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘) ≤ (𝐵‘𝑘) ↔ (𝐴‘𝑗) ≤ (𝐵‘𝑗))) |
52 | 51 | cbvralvw 3380 |
. . . . . . . 8
⊢
(∀𝑘 ∈
𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) ↔ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) |
53 | 52 | biimpi 215 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) → ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) |
54 | 53 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) |
55 | | vonicc.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ Fin) |
56 | 55 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
57 | 56 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) → 𝑋 ∈ Fin) |
58 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ) |
59 | 58 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) → 𝐴:𝑋⟶ℝ) |
60 | 7 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ) |
61 | 60 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) → 𝐵:𝑋⟶ℝ) |
62 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) |
63 | 62 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) → 𝑋 ≠ ∅) |
64 | 52, 41 | sylanbr 582 |
. . . . . . . 8
⊢
((∀𝑗 ∈
𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
65 | 64 | adantll 711 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
66 | | fveq2 6766 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑘 → (𝐵‘𝑗) = (𝐵‘𝑘)) |
67 | 66 | oveq1d 7282 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑘 → ((𝐵‘𝑗) + (1 / 𝑚)) = ((𝐵‘𝑘) + (1 / 𝑚))) |
68 | 67 | cbvmptv 5186 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚))) |
69 | 68 | mpteq2i 5178 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚)))) |
70 | | oveq2 7275 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛)) |
71 | 70 | oveq2d 7283 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → ((𝐵‘𝑘) + (1 / 𝑚)) = ((𝐵‘𝑘) + (1 / 𝑛))) |
72 | 71 | mpteq2dv 5175 |
. . . . . . . . 9
⊢ (𝑚 = 𝑛 → (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚))) = (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
73 | 72 | cbvmptv 5186 |
. . . . . . . 8
⊢ (𝑚 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
74 | 69, 73 | eqtri 2766 |
. . . . . . 7
⊢ (𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ ((𝐵‘𝑘) + (1 / 𝑛)))) |
75 | | fveq2 6766 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑛)) |
76 | 75 | fveq1d 6768 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)) |
77 | 76 | oveq2d 7283 |
. . . . . . . . 9
⊢ (𝑖 = 𝑛 → ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))) |
78 | 77 | ixpeq2dv 8688 |
. . . . . . . 8
⊢ (𝑖 = 𝑛 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))) |
79 | 78 | cbvmptv 5186 |
. . . . . . 7
⊢ (𝑖 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗 ∈ 𝑋 ↦ ((𝐵‘𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))) |
80 | 57, 59, 61, 63, 65, 15, 74, 79 | vonicclem2 44203 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑗 ∈ 𝑋 (𝐴‘𝑗) ≤ (𝐵‘𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
81 | 54, 80 | syldan 591 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘 ∈ 𝑋 ((𝐵‘𝑘) − (𝐴‘𝑘))) |
82 | 1, 56, 62, 58, 60 | hoidmvn0val 44103 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
83 | 82 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
84 | 48, 81, 83 | 3eqtr4d 2788 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
85 | | rexnal 3167 |
. . . . . . . . . 10
⊢
(∃𝑘 ∈
𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘) ↔ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
86 | 85 | bicomi 223 |
. . . . . . . . 9
⊢ (¬
∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) ↔ ∃𝑘 ∈ 𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
87 | 86 | biimpi 215 |
. . . . . . . 8
⊢ (¬
∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘) → ∃𝑘 ∈ 𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
88 | 87 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∃𝑘 ∈ 𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
89 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) |
90 | 37 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (𝐵‘𝑘) ∈ ℝ) |
91 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (𝐴‘𝑘) ∈ ℝ) |
92 | 90, 91 | ltnled 11132 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ((𝐵‘𝑘) < (𝐴‘𝑘) ↔ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘))) |
93 | 89, 92 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ 𝑋) ∧ ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (𝐵‘𝑘) < (𝐴‘𝑘)) |
94 | 93 | ex 413 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘) → (𝐵‘𝑘) < (𝐴‘𝑘))) |
95 | 94 | reximdva 3201 |
. . . . . . . 8
⊢ (𝜑 → (∃𝑘 ∈ 𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘) → ∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘))) |
96 | 95 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → (∃𝑘 ∈ 𝑋 ¬ (𝐴‘𝑘) ≤ (𝐵‘𝑘) → ∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘))) |
97 | 88, 96 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘)) |
98 | 97 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘)) |
99 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘(voln‘𝑋) |
100 | | nfixp1 8693 |
. . . . . . . . . 10
⊢
Ⅎ𝑘X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) |
101 | 15, 100 | nfcxfr 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐼 |
102 | 99, 101 | nffv 6776 |
. . . . . . . 8
⊢
Ⅎ𝑘((voln‘𝑋)‘𝐼) |
103 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐴 |
104 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘Fin |
105 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(ℝ ↑m 𝑥) |
106 | | nfv 1917 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑥 = ∅ |
107 | | nfcv 2907 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘0 |
108 | | nfcv 2907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑥 |
109 | 108 | nfcprod1 15630 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))) |
110 | 106, 107,
109 | nfif 4489 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))) |
111 | 105, 105,
110 | nfmpo 7347 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘))))) |
112 | 104, 111 | nfmpt 5180 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
113 | 1, 112 | nfcxfr 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐿 |
114 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝑋 |
115 | 113, 114 | nffv 6776 |
. . . . . . . . 9
⊢
Ⅎ𝑘(𝐿‘𝑋) |
116 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐵 |
117 | 103, 115,
116 | nfov 7297 |
. . . . . . . 8
⊢
Ⅎ𝑘(𝐴(𝐿‘𝑋)𝐵) |
118 | 102, 117 | nfeq 2920 |
. . . . . . 7
⊢
Ⅎ𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵) |
119 | 55 | vonmea 44093 |
. . . . . . . . . . . 12
⊢ (𝜑 → (voln‘𝑋) ∈ Meas) |
120 | 119 | mea0 43973 |
. . . . . . . . . . 11
⊢ (𝜑 → ((voln‘𝑋)‘∅) =
0) |
121 | 120 | 3ad2ant1 1132 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ((voln‘𝑋)‘∅) = 0) |
122 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → 𝐼 = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘))) |
123 | | simp2 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → 𝑘 ∈ 𝑋) |
124 | | simp3 1137 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → (𝐵‘𝑘) < (𝐴‘𝑘)) |
125 | | ressxr 11029 |
. . . . . . . . . . . . . . . . . 18
⊢ ℝ
⊆ ℝ* |
126 | 125, 36 | sselid 3918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈
ℝ*) |
127 | 125, 37 | sselid 3918 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐵‘𝑘) ∈
ℝ*) |
128 | | icc0 13137 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝑘) ∈ ℝ* ∧ (𝐵‘𝑘) ∈ ℝ*) → (((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅ ↔ (𝐵‘𝑘) < (𝐴‘𝑘))) |
129 | 126, 127,
128 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅ ↔ (𝐵‘𝑘) < (𝐴‘𝑘))) |
130 | 129 | 3adant3 1131 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → (((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅ ↔ (𝐵‘𝑘) < (𝐴‘𝑘))) |
131 | 124, 130 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) |
132 | | rspe 3235 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝑋 ∧ ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) → ∃𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) |
133 | 123, 131,
132 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ∃𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) |
134 | | ixp0 8706 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅ → X𝑘 ∈
𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐵‘𝑘)) = ∅) |
136 | 122, 135 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → 𝐼 = ∅) |
137 | 136 | fveq2d 6770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅)) |
138 | | ne0i 4268 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ 𝑋 → 𝑋 ≠ ∅) |
139 | 138 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑋 ≠ ∅) |
140 | 139, 82 | syldan 591 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
141 | 140 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
142 | | eleq1w 2821 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝑋 ↔ 𝑘 ∈ 𝑋)) |
143 | | fveq2 6766 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝑘 → (𝐴‘𝑗) = (𝐴‘𝑘)) |
144 | 66, 143 | breq12d 5086 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑘 → ((𝐵‘𝑗) < (𝐴‘𝑗) ↔ (𝐵‘𝑘) < (𝐴‘𝑘))) |
145 | 142, 144 | 3anbi23d 1438 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) ↔ (𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)))) |
146 | 145 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) ↔ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0))) |
147 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) |
148 | 55 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → 𝑋 ∈ Fin) |
149 | | volicore 44100 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
150 | 36, 37, 149 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
151 | 150 | recnd 11013 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
152 | 151 | 3ad2antl1 1184 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
153 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → 𝑗 ∈ 𝑋) |
154 | 49, 50 | oveq12d 7285 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝑗)[,)(𝐵‘𝑗))) |
155 | 154 | fveq2d 6770 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗)))) |
156 | 155 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗)))) |
157 | 2 | ffvelrnda 6953 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐴‘𝑗) ∈ ℝ) |
158 | 7 | ffvelrnda 6953 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (𝐵‘𝑗) ∈ ℝ) |
159 | | volico2 44160 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴‘𝑗) ∈ ℝ ∧ (𝐵‘𝑗) ∈ ℝ) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = if((𝐴‘𝑗) ≤ (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0)) |
160 | 157, 158,
159 | syl2anc 584 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = if((𝐴‘𝑗) ≤ (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0)) |
161 | 160 | 3adant3 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = if((𝐴‘𝑗) ≤ (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0)) |
162 | | simp3 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → (𝐵‘𝑗) < (𝐴‘𝑗)) |
163 | 158, 157 | ltnled 11132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋) → ((𝐵‘𝑗) < (𝐴‘𝑗) ↔ ¬ (𝐴‘𝑗) ≤ (𝐵‘𝑗))) |
164 | 163 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → ((𝐵‘𝑗) < (𝐴‘𝑗) ↔ ¬ (𝐴‘𝑗) ≤ (𝐵‘𝑗))) |
165 | 162, 164 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → ¬ (𝐴‘𝑗) ≤ (𝐵‘𝑗)) |
166 | 165 | iffalsed 4470 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → if((𝐴‘𝑗) ≤ (𝐵‘𝑗), ((𝐵‘𝑗) − (𝐴‘𝑗)), 0) = 0) |
167 | 161, 166 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = 0) |
168 | 167 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴‘𝑗)[,)(𝐵‘𝑗))) = 0) |
169 | 156, 168 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
170 | 147, 148,
152, 153, 169 | fprodeq0g 15714 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑋 ∧ (𝐵‘𝑗) < (𝐴‘𝑗)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
171 | 146, 170 | chvarvv 2002 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = 0) |
172 | 141, 171 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → (𝐴(𝐿‘𝑋)𝐵) = 0) |
173 | 121, 137,
172 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋 ∧ (𝐵‘𝑘) < (𝐴‘𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
174 | 173 | 3exp 1118 |
. . . . . . . 8
⊢ (𝜑 → (𝑘 ∈ 𝑋 → ((𝐵‘𝑘) < (𝐴‘𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)))) |
175 | 174 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑘 ∈ 𝑋 → ((𝐵‘𝑘) < (𝐴‘𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)))) |
176 | 33, 118, 175 | rexlimd 3248 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵))) |
177 | 176 | imp 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ∃𝑘 ∈ 𝑋 (𝐵‘𝑘) < (𝐴‘𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
178 | 98, 177 | syldan 591 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ ¬ ∀𝑘 ∈ 𝑋 (𝐴‘𝑘) ≤ (𝐵‘𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
179 | 84, 178 | pm2.61dan 810 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
180 | 32, 179 | syldan 591 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |
181 | 30, 180 | pm2.61dan 810 |
1
⊢ (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿‘𝑋)𝐵)) |