Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonicc Structured version   Visualization version   GIF version

Theorem vonicc 44223
Description: The n-dimensional Lebesgue measure of a closed interval. This is the second statement in Proposition 115G (d) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonicc.x (𝜑𝑋 ∈ Fin)
vonicc.a (𝜑𝐴:𝑋⟶ℝ)
vonicc.b (𝜑𝐵:𝑋⟶ℝ)
vonicc.i 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
vonicc.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
Assertion
Ref Expression
vonicc (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐵,𝑎,𝑏,𝑘   𝑋,𝑎,𝑏,𝑘,𝑥   𝜑,𝑎,𝑏,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐼(𝑥,𝑘,𝑎,𝑏)   𝐿(𝑥,𝑘,𝑎,𝑏)

Proof of Theorem vonicc
Dummy variables 𝑖 𝑗 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vonicc.l . . . . 5 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
2 vonicc.a . . . . . . 7 (𝜑𝐴:𝑋⟶ℝ)
32adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴:𝑋⟶ℝ)
4 feq2 6582 . . . . . . 7 (𝑋 = ∅ → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
54adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐴:𝑋⟶ℝ ↔ 𝐴:∅⟶ℝ))
63, 5mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴:∅⟶ℝ)
7 vonicc.b . . . . . . 7 (𝜑𝐵:𝑋⟶ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐵:𝑋⟶ℝ)
9 feq2 6582 . . . . . . 7 (𝑋 = ∅ → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
109adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (𝐵:𝑋⟶ℝ ↔ 𝐵:∅⟶ℝ))
118, 10mpbid 231 . . . . 5 ((𝜑𝑋 = ∅) → 𝐵:∅⟶ℝ)
121, 6, 11hoidmv0val 44121 . . . 4 ((𝜑𝑋 = ∅) → (𝐴(𝐿‘∅)𝐵) = 0)
1312eqcomd 2744 . . 3 ((𝜑𝑋 = ∅) → 0 = (𝐴(𝐿‘∅)𝐵))
14 fveq2 6774 . . . . . 6 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
15 vonicc.i . . . . . . . 8 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
1615a1i 11 . . . . . . 7 (𝑋 = ∅ → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
17 ixpeq1 8696 . . . . . . 7 (𝑋 = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1816, 17eqtrd 2778 . . . . . 6 (𝑋 = ∅ → 𝐼 = X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)))
1914, 18fveq12d 6781 . . . . 5 (𝑋 = ∅ → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
2019adantl 482 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))))
21 0fin 8954 . . . . . . 7 ∅ ∈ Fin
2221a1i 11 . . . . . 6 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
23 eqid 2738 . . . . . 6 dom (voln‘∅) = dom (voln‘∅)
2422, 23, 6, 11iccvonmbl 44217 . . . . 5 ((𝜑𝑋 = ∅) → X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘)) ∈ dom (voln‘∅))
2524von0val 44209 . . . 4 ((𝜑𝑋 = ∅) → ((voln‘∅)‘X𝑘 ∈ ∅ ((𝐴𝑘)[,](𝐵𝑘))) = 0)
2620, 25eqtrd 2778 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = 0)
27 fveq2 6774 . . . . 5 (𝑋 = ∅ → (𝐿𝑋) = (𝐿‘∅))
2827oveqd 7292 . . . 4 (𝑋 = ∅ → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
2928adantl 482 . . 3 ((𝜑𝑋 = ∅) → (𝐴(𝐿𝑋)𝐵) = (𝐴(𝐿‘∅)𝐵))
3013, 26, 293eqtr4d 2788 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
31 neqne 2951 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
3231adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
33 nfv 1917 . . . . . . . . 9 𝑘(𝜑𝑋 ≠ ∅)
34 nfra1 3144 . . . . . . . . 9 𝑘𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)
3533, 34nfan 1902 . . . . . . . 8 𝑘((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
362ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
377ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
38 volico2 44179 . . . . . . . . . . . 12 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
3936, 37, 38syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
4039ad4ant14 749 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0))
41 rspa 3132 . . . . . . . . . . . 12 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
4241iftrued 4467 . . . . . . . . . . 11 ((∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4342adantll 711 . . . . . . . . . 10 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → if((𝐴𝑘) ≤ (𝐵𝑘), ((𝐵𝑘) − (𝐴𝑘)), 0) = ((𝐵𝑘) − (𝐴𝑘)))
4440, 43eqtrd 2778 . . . . . . . . 9 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4544ex 413 . . . . . . . 8 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝑘𝑋 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘))))
4635, 45ralrimi 3141 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ((𝐵𝑘) − (𝐴𝑘)))
4746prodeq2d 15632 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
4847eqcomd 2744 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
49 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐴𝑘) = (𝐴𝑗))
50 fveq2 6774 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐵𝑘) = (𝐵𝑗))
5149, 50breq12d 5087 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐴𝑘) ≤ (𝐵𝑘) ↔ (𝐴𝑗) ≤ (𝐵𝑗)))
5251cbvralvw 3383 . . . . . . . 8 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5352biimpi 215 . . . . . . 7 (∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
5453adantl 482 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗))
55 vonicc.x . . . . . . . . 9 (𝜑𝑋 ∈ Fin)
5655adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
5756adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ∈ Fin)
582adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
5958adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐴:𝑋⟶ℝ)
607adantr 481 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝐵:𝑋⟶ℝ)
6160adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝐵:𝑋⟶ℝ)
62 simpr 485 . . . . . . . 8 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
6362adantr 481 . . . . . . 7 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → 𝑋 ≠ ∅)
6452, 41sylanbr 582 . . . . . . . 8 ((∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
6564adantll 711 . . . . . . 7 ((((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) ∧ 𝑘𝑋) → (𝐴𝑘) ≤ (𝐵𝑘))
66 fveq2 6774 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝐵𝑗) = (𝐵𝑘))
6766oveq1d 7290 . . . . . . . . . 10 (𝑗 = 𝑘 → ((𝐵𝑗) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑚)))
6867cbvmptv 5187 . . . . . . . . 9 (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))
6968mpteq2i 5179 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))))
70 oveq2 7283 . . . . . . . . . . 11 (𝑚 = 𝑛 → (1 / 𝑚) = (1 / 𝑛))
7170oveq2d 7291 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝐵𝑘) + (1 / 𝑚)) = ((𝐵𝑘) + (1 / 𝑛)))
7271mpteq2dv 5176 . . . . . . . . 9 (𝑚 = 𝑛 → (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚))) = (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7372cbvmptv 5187 . . . . . . . 8 (𝑚 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
7469, 73eqtri 2766 . . . . . . 7 (𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚)))) = (𝑛 ∈ ℕ ↦ (𝑘𝑋 ↦ ((𝐵𝑘) + (1 / 𝑛))))
75 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 𝑛 → ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖) = ((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛))
7675fveq1d 6776 . . . . . . . . . 10 (𝑖 = 𝑛 → (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘) = (((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘))
7776oveq2d 7291 . . . . . . . . 9 (𝑖 = 𝑛 → ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7877ixpeq2dv 8701 . . . . . . . 8 (𝑖 = 𝑛X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
7978cbvmptv 5187 . . . . . . 7 (𝑖 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑖)‘𝑘))) = (𝑛 ∈ ℕ ↦ X𝑘𝑋 ((𝐴𝑘)[,)(((𝑚 ∈ ℕ ↦ (𝑗𝑋 ↦ ((𝐵𝑗) + (1 / 𝑚))))‘𝑛)‘𝑘)))
8057, 59, 61, 63, 65, 15, 74, 79vonicclem2 44222 . . . . . 6 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑗𝑋 (𝐴𝑗) ≤ (𝐵𝑗)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
8154, 80syldan 591 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = ∏𝑘𝑋 ((𝐵𝑘) − (𝐴𝑘)))
821, 56, 62, 58, 60hoidmvn0val 44122 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8382adantr 481 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
8448, 81, 833eqtr4d 2788 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
85 rexnal 3169 . . . . . . . . . 10 (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) ↔ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘))
8685bicomi 223 . . . . . . . . 9 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) ↔ ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8786biimpi 215 . . . . . . . 8 (¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
8887adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘))
89 simpr 485 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ¬ (𝐴𝑘) ≤ (𝐵𝑘))
9037adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) ∈ ℝ)
9136adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐴𝑘) ∈ ℝ)
9290, 91ltnled 11122 . . . . . . . . . . 11 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → ((𝐵𝑘) < (𝐴𝑘) ↔ ¬ (𝐴𝑘) ≤ (𝐵𝑘)))
9389, 92mpbird 256 . . . . . . . . . 10 (((𝜑𝑘𝑋) ∧ ¬ (𝐴𝑘) ≤ (𝐵𝑘)) → (𝐵𝑘) < (𝐴𝑘))
9493ex 413 . . . . . . . . 9 ((𝜑𝑘𝑋) → (¬ (𝐴𝑘) ≤ (𝐵𝑘) → (𝐵𝑘) < (𝐴𝑘)))
9594reximdva 3203 . . . . . . . 8 (𝜑 → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9695adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → (∃𝑘𝑋 ¬ (𝐴𝑘) ≤ (𝐵𝑘) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)))
9788, 96mpd 15 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
9897adantlr 712 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘))
99 nfcv 2907 . . . . . . . . 9 𝑘(voln‘𝑋)
100 nfixp1 8706 . . . . . . . . . 10 𝑘X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘))
10115, 100nfcxfr 2905 . . . . . . . . 9 𝑘𝐼
10299, 101nffv 6784 . . . . . . . 8 𝑘((voln‘𝑋)‘𝐼)
103 nfcv 2907 . . . . . . . . 9 𝑘𝐴
104 nfcv 2907 . . . . . . . . . . . 12 𝑘Fin
105 nfcv 2907 . . . . . . . . . . . . 13 𝑘(ℝ ↑m 𝑥)
106 nfv 1917 . . . . . . . . . . . . . 14 𝑘 𝑥 = ∅
107 nfcv 2907 . . . . . . . . . . . . . 14 𝑘0
108 nfcv 2907 . . . . . . . . . . . . . . 15 𝑘𝑥
109108nfcprod1 15620 . . . . . . . . . . . . . 14 𝑘𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))
110106, 107, 109nfif 4489 . . . . . . . . . . . . 13 𝑘if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))
111105, 105, 110nfmpo 7357 . . . . . . . . . . . 12 𝑘(𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘)))))
112104, 111nfmpt 5181 . . . . . . . . . . 11 𝑘(𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
1131, 112nfcxfr 2905 . . . . . . . . . 10 𝑘𝐿
114 nfcv 2907 . . . . . . . . . 10 𝑘𝑋
115113, 114nffv 6784 . . . . . . . . 9 𝑘(𝐿𝑋)
116 nfcv 2907 . . . . . . . . 9 𝑘𝐵
117103, 115, 116nfov 7305 . . . . . . . 8 𝑘(𝐴(𝐿𝑋)𝐵)
118102, 117nfeq 2920 . . . . . . 7 𝑘((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)
11955vonmea 44112 . . . . . . . . . . . 12 (𝜑 → (voln‘𝑋) ∈ Meas)
120119mea0 43992 . . . . . . . . . . 11 (𝜑 → ((voln‘𝑋)‘∅) = 0)
1211203ad2ant1 1132 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘∅) = 0)
12215a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)))
123 simp2 1136 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝑘𝑋)
124 simp3 1137 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐵𝑘) < (𝐴𝑘))
125 ressxr 11019 . . . . . . . . . . . . . . . . . 18 ℝ ⊆ ℝ*
126125, 36sselid 3919 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
127125, 37sselid 3919 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
128 icc0 13127 . . . . . . . . . . . . . . . . 17 (((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
129126, 127, 128syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑋) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
1301293adant3 1131 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (((𝐴𝑘)[,](𝐵𝑘)) = ∅ ↔ (𝐵𝑘) < (𝐴𝑘)))
131124, 130mpbird 256 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
132 rspe 3237 . . . . . . . . . . . . . 14 ((𝑘𝑋 ∧ ((𝐴𝑘)[,](𝐵𝑘)) = ∅) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
133123, 131, 132syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
134 ixp0 8719 . . . . . . . . . . . . 13 (∃𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅ → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
135133, 134syl 17 . . . . . . . . . . . 12 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → X𝑘𝑋 ((𝐴𝑘)[,](𝐵𝑘)) = ∅)
136122, 135eqtrd 2778 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → 𝐼 = ∅)
137136fveq2d 6778 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = ((voln‘𝑋)‘∅))
138 ne0i 4268 . . . . . . . . . . . . . 14 (𝑘𝑋𝑋 ≠ ∅)
139138adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑘𝑋) → 𝑋 ≠ ∅)
140139, 82syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘𝑋) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
1411403adant3 1131 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
142 eleq1w 2821 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → (𝑗𝑋𝑘𝑋))
143 fveq2 6774 . . . . . . . . . . . . . . 15 (𝑗 = 𝑘 → (𝐴𝑗) = (𝐴𝑘))
14466, 143breq12d 5087 . . . . . . . . . . . . . 14 (𝑗 = 𝑘 → ((𝐵𝑗) < (𝐴𝑗) ↔ (𝐵𝑘) < (𝐴𝑘)))
145142, 1443anbi23d 1438 . . . . . . . . . . . . 13 (𝑗 = 𝑘 → ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ↔ (𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘))))
146145imbi1d 342 . . . . . . . . . . . 12 (𝑗 = 𝑘 → (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0) ↔ ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)))
147 nfv 1917 . . . . . . . . . . . . 13 𝑘(𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗))
148553ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑋 ∈ Fin)
149 volicore 44119 . . . . . . . . . . . . . . . 16 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
15036, 37, 149syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
151150recnd 11003 . . . . . . . . . . . . . 14 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
1521513ad2antl1 1184 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℂ)
153 simp2 1136 . . . . . . . . . . . . 13 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → 𝑗𝑋)
15449, 50oveq12d 7293 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐴𝑘)[,)(𝐵𝑘)) = ((𝐴𝑗)[,)(𝐵𝑗)))
155154fveq2d 6778 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
156155adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = (vol‘((𝐴𝑗)[,)(𝐵𝑗))))
1572ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐴𝑗) ∈ ℝ)
1587ffvelrnda 6961 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
159 volico2 44179 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑗) ∈ ℝ ∧ (𝐵𝑗) ∈ ℝ) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
160157, 158, 159syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
1611603adant3 1131 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0))
162 simp3 1137 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (𝐵𝑗) < (𝐴𝑗))
163158, 157ltnled 11122 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗𝑋) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
1641633adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ((𝐵𝑗) < (𝐴𝑗) ↔ ¬ (𝐴𝑗) ≤ (𝐵𝑗)))
165162, 164mpbid 231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ¬ (𝐴𝑗) ≤ (𝐵𝑗))
166165iffalsed 4470 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → if((𝐴𝑗) ≤ (𝐵𝑗), ((𝐵𝑗) − (𝐴𝑗)), 0) = 0)
167161, 166eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
168167adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑗)[,)(𝐵𝑗))) = 0)
169156, 168eqtrd 2778 . . . . . . . . . . . . 13 (((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) ∧ 𝑘 = 𝑗) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
170147, 148, 152, 153, 169fprodeq0g 15704 . . . . . . . . . . . 12 ((𝜑𝑗𝑋 ∧ (𝐵𝑗) < (𝐴𝑗)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
171146, 170chvarvv 2002 . . . . . . . . . . 11 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))) = 0)
172141, 171eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → (𝐴(𝐿𝑋)𝐵) = 0)
173121, 137, 1723eqtr4d 2788 . . . . . . . . 9 ((𝜑𝑘𝑋 ∧ (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
1741733exp 1118 . . . . . . . 8 (𝜑 → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
175174adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → (𝑘𝑋 → ((𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))))
17633, 118, 175rexlimd 3250 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵)))
177176imp 407 . . . . 5 (((𝜑𝑋 ≠ ∅) ∧ ∃𝑘𝑋 (𝐵𝑘) < (𝐴𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17898, 177syldan 591 . . . 4 (((𝜑𝑋 ≠ ∅) ∧ ¬ ∀𝑘𝑋 (𝐴𝑘) ≤ (𝐵𝑘)) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
17984, 178pm2.61dan 810 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18032, 179syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
18130, 180pm2.61dan 810 1 (𝜑 → ((voln‘𝑋)‘𝐼) = (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  c0 4256  ifcif 4459   class class class wbr 5074  cmpt 5157  dom cdm 5589  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615  Xcixp 8685  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  [,)cico 13081  [,]cicc 13082  cprod 15615  volcvol 24627  volncvoln 44076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-pws 17160  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-abv 20077  df-staf 20105  df-srng 20106  df-lmod 20125  df-lss 20194  df-lmhm 20284  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-refld 20810  df-phl 20831  df-dsmm 20939  df-frlm 20954  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cn 22378  df-cnp 22379  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-tng 23740  df-nrg 23741  df-nlm 23742  df-cncf 24041  df-clm 24226  df-cph 24332  df-tcph 24333  df-rrx 24549  df-ovol 24628  df-vol 24629  df-salg 43850  df-sumge0 43901  df-mea 43988  df-ome 44028  df-caragen 44030  df-ovoln 44075  df-voln 44077
This theorem is referenced by:  vonn0icc  44226
  Copyright terms: Public domain W3C validator