Step | Hyp | Ref
| Expression |
1 | | ixpeq12dv.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 = 𝐵) |
2 | 1 | eleq2d 2830 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
3 | 2 | abbidv 2811 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∣ 𝑥 ∈ 𝐴} = {𝑥 ∣ 𝑥 ∈ 𝐵}) |
4 | 3 | fneq2d 6668 |
. . . . 5
⊢ (𝜑 → (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ↔ 𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐵})) |
5 | 2 | imbi1d 341 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 → (𝑡‘𝑥) ∈ 𝐶) ↔ (𝑥 ∈ 𝐵 → (𝑡‘𝑥) ∈ 𝐶))) |
6 | 5 | albidv 1919 |
. . . . . 6
⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → (𝑡‘𝑥) ∈ 𝐶) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑡‘𝑥) ∈ 𝐶))) |
7 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝑡‘𝑥) ∈ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑡‘𝑥) ∈ 𝐶)) |
8 | | df-ral 3068 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐵 (𝑡‘𝑥) ∈ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑡‘𝑥) ∈ 𝐶)) |
9 | 6, 7, 8 | 3bitr4g 314 |
. . . . 5
⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝑡‘𝑥) ∈ 𝐶)) |
10 | 4, 9 | anbi12d 631 |
. . . 4
⊢ (𝜑 → ((𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶) ↔ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐵} ∧ ∀𝑥 ∈ 𝐵 (𝑡‘𝑥) ∈ 𝐶))) |
11 | 10 | abbidv 2811 |
. . 3
⊢ (𝜑 → {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶)} = {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐵} ∧ ∀𝑥 ∈ 𝐵 (𝑡‘𝑥) ∈ 𝐶)}) |
12 | | df-ixp 8950 |
. . 3
⊢ X𝑥 ∈
𝐴 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑡‘𝑥) ∈ 𝐶)} |
13 | | df-ixp 8950 |
. . 3
⊢ X𝑥 ∈
𝐵 𝐶 = {𝑡 ∣ (𝑡 Fn {𝑥 ∣ 𝑥 ∈ 𝐵} ∧ ∀𝑥 ∈ 𝐵 (𝑡‘𝑥) ∈ 𝐶)} |
14 | 11, 12, 13 | 3eqtr4g 2805 |
. 2
⊢ (𝜑 → X𝑥 ∈
𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
15 | | ixpeq12dv.2 |
. . 3
⊢ (𝜑 → 𝐶 = 𝐷) |
16 | 15 | ixpeq2dv 8965 |
. 2
⊢ (𝜑 → X𝑥 ∈
𝐵 𝐶 = X𝑥 ∈ 𝐵 𝐷) |
17 | 14, 16 | eqtrd 2780 |
1
⊢ (𝜑 → X𝑥 ∈
𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐷) |