Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sumeq12sdv Structured version   Visualization version   GIF version

Theorem sumeq12sdv 36160
Description: Equality deduction for sum. General version of sumeq2sdv 15725. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
sumeq12sdv.1 (𝜑𝐴 = 𝐵)
sumeq12sdv.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sumeq12sdv (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
Distinct variable group:   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem sumeq12sdv
StepHypRef Expression
1 sumeq12sdv.1 . . 3 (𝜑𝐴 = 𝐵)
21sumeq1d 15722 . 2 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
3 sumeq12sdv.2 . . 3 (𝜑𝐶 = 𝐷)
43sumeq2sdv 15725 . 2 (𝜑 → Σ𝑘𝐵 𝐶 = Σ𝑘𝐵 𝐷)
52, 4eqtrd 2773 1 (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1535  Σcsu 15708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-ext 2704
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-sb 2061  df-clab 2711  df-cleq 2725  df-clel 2812  df-ral 3058  df-rex 3067  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4915  df-br 5150  df-opab 5212  df-mpt 5233  df-xp 5689  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-iota 6510  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-ov 7428  df-oprab 7429  df-mpo 7430  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-seq 14029  df-sum 15709
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator