| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8926 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Xcixp 8911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-ss 3943 df-ixp 8912 |
| This theorem is referenced by: prdsval 17469 brssc 17827 isfunc 17877 natfval 17962 isnat 17963 dprdval 19986 elpt 23510 elptr 23511 dfac14 23556 ixpeq12dv 36234 hoicvrrex 46585 ovncvrrp 46593 ovnsubaddlem1 46599 ovnsubadd 46601 hoidmvlelem3 46626 hoidmvle 46629 ovnhoilem1 46630 ovnhoilem2 46631 ovnhoi 46632 hspval 46638 ovncvr2 46640 hspmbllem2 46656 hspmbl 46658 hoimbl 46660 opnvonmbl 46663 ovnovollem1 46685 ovnovollem3 46687 iinhoiicclem 46702 iinhoiicc 46703 vonioolem2 46710 vonioo 46711 vonicclem2 46713 vonicc 46714 |
| Copyright terms: Public domain | W3C validator |