Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ixpeq2dva 8700 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Xcixp 8685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-in 3894 df-ss 3904 df-ixp 8686 |
This theorem is referenced by: prdsval 17166 brssc 17526 isfunc 17579 natfval 17662 isnat 17663 dprdval 19606 elpt 22723 elptr 22724 dfac14 22769 hoicvrrex 44094 ovncvrrp 44102 ovnsubaddlem1 44108 ovnsubadd 44110 hoidmvlelem3 44135 hoidmvle 44138 ovnhoilem1 44139 ovnhoilem2 44140 ovnhoi 44141 hspval 44147 ovncvr2 44149 hspmbllem2 44165 hspmbl 44167 hoimbl 44169 opnvonmbl 44172 ovnovollem1 44194 ovnovollem3 44196 iinhoiicclem 44211 iinhoiicc 44212 vonioolem2 44219 vonioo 44220 vonicclem2 44222 vonicc 44223 |
Copyright terms: Public domain | W3C validator |