| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8839 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Xcixp 8824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-ss 3920 df-ixp 8825 |
| This theorem is referenced by: prdsval 17359 brssc 17721 isfunc 17771 natfval 17856 isnat 17857 dprdval 19884 elpt 23457 elptr 23458 dfac14 23503 ixpeq12dv 36190 hoicvrrex 46537 ovncvrrp 46545 ovnsubaddlem1 46551 ovnsubadd 46553 hoidmvlelem3 46578 hoidmvle 46581 ovnhoilem1 46582 ovnhoilem2 46583 ovnhoi 46584 hspval 46590 ovncvr2 46592 hspmbllem2 46608 hspmbl 46610 hoimbl 46612 opnvonmbl 46615 ovnovollem1 46637 ovnovollem3 46639 iinhoiicclem 46654 iinhoiicc 46655 vonioolem2 46662 vonioo 46663 vonicclem2 46665 vonicc 46666 |
| Copyright terms: Public domain | W3C validator |