| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8862 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Xcixp 8847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-ss 3928 df-ixp 8848 |
| This theorem is referenced by: prdsval 17394 brssc 17756 isfunc 17806 natfval 17891 isnat 17892 dprdval 19919 elpt 23492 elptr 23493 dfac14 23538 ixpeq12dv 36197 hoicvrrex 46547 ovncvrrp 46555 ovnsubaddlem1 46561 ovnsubadd 46563 hoidmvlelem3 46588 hoidmvle 46591 ovnhoilem1 46592 ovnhoilem2 46593 ovnhoi 46594 hspval 46600 ovncvr2 46602 hspmbllem2 46618 hspmbl 46620 hoimbl 46622 opnvonmbl 46625 ovnovollem1 46647 ovnovollem3 46649 iinhoiicclem 46664 iinhoiicc 46665 vonioolem2 46672 vonioo 46673 vonicclem2 46675 vonicc 46676 |
| Copyright terms: Public domain | W3C validator |