| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8885 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Xcixp 8870 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-ss 3931 df-ixp 8871 |
| This theorem is referenced by: prdsval 17418 brssc 17776 isfunc 17826 natfval 17911 isnat 17912 dprdval 19935 elpt 23459 elptr 23460 dfac14 23505 ixpeq12dv 36204 hoicvrrex 46554 ovncvrrp 46562 ovnsubaddlem1 46568 ovnsubadd 46570 hoidmvlelem3 46595 hoidmvle 46598 ovnhoilem1 46599 ovnhoilem2 46600 ovnhoi 46601 hspval 46607 ovncvr2 46609 hspmbllem2 46625 hspmbl 46627 hoimbl 46629 opnvonmbl 46632 ovnovollem1 46654 ovnovollem3 46656 iinhoiicclem 46671 iinhoiicc 46672 vonioolem2 46679 vonioo 46680 vonicclem2 46682 vonicc 46683 |
| Copyright terms: Public domain | W3C validator |