| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8862 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Xcixp 8847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-ss 3928 df-ixp 8848 |
| This theorem is referenced by: prdsval 17394 brssc 17752 isfunc 17802 natfval 17887 isnat 17888 dprdval 19911 elpt 23435 elptr 23436 dfac14 23481 ixpeq12dv 36177 hoicvrrex 46527 ovncvrrp 46535 ovnsubaddlem1 46541 ovnsubadd 46543 hoidmvlelem3 46568 hoidmvle 46571 ovnhoilem1 46572 ovnhoilem2 46573 ovnhoi 46574 hspval 46580 ovncvr2 46582 hspmbllem2 46598 hspmbl 46600 hoimbl 46602 opnvonmbl 46605 ovnovollem1 46627 ovnovollem3 46629 iinhoiicclem 46644 iinhoiicc 46645 vonioolem2 46652 vonioo 46653 vonicclem2 46655 vonicc 46656 |
| Copyright terms: Public domain | W3C validator |