Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ixpeq2dva 8658 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-ixp 8644 |
This theorem is referenced by: prdsval 17083 brssc 17443 isfunc 17495 natfval 17578 isnat 17579 dprdval 19521 elpt 22631 elptr 22632 dfac14 22677 hoicvrrex 43984 ovncvrrp 43992 ovnsubaddlem1 43998 ovnsubadd 44000 hoidmvlelem3 44025 hoidmvle 44028 ovnhoilem1 44029 ovnhoilem2 44030 ovnhoi 44031 hspval 44037 ovncvr2 44039 hspmbllem2 44055 hspmbl 44057 hoimbl 44059 opnvonmbl 44062 ovnovollem1 44084 ovnovollem3 44086 iinhoiicclem 44101 iinhoiicc 44102 vonioolem2 44109 vonioo 44110 vonicclem2 44112 vonicc 44113 |
Copyright terms: Public domain | W3C validator |