| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8836 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-ss 3914 df-ixp 8822 |
| This theorem is referenced by: prdsval 17359 brssc 17721 isfunc 17771 natfval 17856 isnat 17857 dprdval 19917 elpt 23487 elptr 23488 dfac14 23533 ixpeq12dv 36258 hoicvrrex 46602 ovncvrrp 46610 ovnsubaddlem1 46616 ovnsubadd 46618 hoidmvlelem3 46643 hoidmvle 46646 ovnhoilem1 46647 ovnhoilem2 46648 ovnhoi 46649 hspval 46655 ovncvr2 46657 hspmbllem2 46673 hspmbl 46675 hoimbl 46677 opnvonmbl 46680 ovnovollem1 46702 ovnovollem3 46704 iinhoiicclem 46719 iinhoiicc 46720 vonioolem2 46727 vonioo 46728 vonicclem2 46730 vonicc 46731 |
| Copyright terms: Public domain | W3C validator |