| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
| Ref | Expression |
|---|---|
| ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
| 3 | 2 | ixpeq2dva 8888 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-ss 3934 df-ixp 8874 |
| This theorem is referenced by: prdsval 17425 brssc 17783 isfunc 17833 natfval 17918 isnat 17919 dprdval 19942 elpt 23466 elptr 23467 dfac14 23512 ixpeq12dv 36211 hoicvrrex 46561 ovncvrrp 46569 ovnsubaddlem1 46575 ovnsubadd 46577 hoidmvlelem3 46602 hoidmvle 46605 ovnhoilem1 46606 ovnhoilem2 46607 ovnhoi 46608 hspval 46614 ovncvr2 46616 hspmbllem2 46632 hspmbl 46634 hoimbl 46636 opnvonmbl 46639 ovnovollem1 46661 ovnovollem3 46663 iinhoiicclem 46678 iinhoiicc 46679 vonioolem2 46686 vonioo 46687 vonicclem2 46689 vonicc 46690 |
| Copyright terms: Public domain | W3C validator |