![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ixpeq2dva 8970 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-ss 3993 df-ixp 8956 |
This theorem is referenced by: prdsval 17515 brssc 17875 isfunc 17928 natfval 18014 isnat 18015 dprdval 20047 elpt 23601 elptr 23602 dfac14 23647 ixpeq12dv 36182 hoicvrrex 46477 ovncvrrp 46485 ovnsubaddlem1 46491 ovnsubadd 46493 hoidmvlelem3 46518 hoidmvle 46521 ovnhoilem1 46522 ovnhoilem2 46523 ovnhoi 46524 hspval 46530 ovncvr2 46532 hspmbllem2 46548 hspmbl 46550 hoimbl 46552 opnvonmbl 46555 ovnovollem1 46577 ovnovollem3 46579 iinhoiicclem 46594 iinhoiicc 46595 vonioolem2 46602 vonioo 46603 vonicclem2 46605 vonicc 46606 |
Copyright terms: Public domain | W3C validator |