Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpeq2dv | Structured version Visualization version GIF version |
Description: Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.) |
Ref | Expression |
---|---|
ixpeq2dv.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ixpeq2dv | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpeq2dv.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | 1 | adantr 484 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) |
3 | 2 | ixpeq2dva 8499 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Xcixp 8484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-in 3867 df-ss 3877 df-ixp 8485 |
This theorem is referenced by: prdsval 16791 brssc 17148 isfunc 17198 natfval 17280 isnat 17281 dprdval 19198 elpt 22277 elptr 22278 dfac14 22323 hoicvrrex 43589 ovncvrrp 43597 ovnsubaddlem1 43603 ovnsubadd 43605 hoidmvlelem3 43630 hoidmvle 43633 ovnhoilem1 43634 ovnhoilem2 43635 ovnhoi 43636 hspval 43642 ovncvr2 43644 hspmbllem2 43660 hspmbl 43662 hoimbl 43664 opnvonmbl 43667 ovnovollem1 43689 ovnovollem3 43691 iinhoiicclem 43706 iinhoiicc 43707 vonioolem2 43714 vonioo 43715 vonicclem2 43717 vonicc 43718 |
Copyright terms: Public domain | W3C validator |