![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6661 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-fn 6566 |
This theorem is referenced by: fneq12d 6664 fncofn 6686 fnco 6687 fnprb 7228 fntpb 7229 fnpr2g 7230 undifixp 8973 brwdom2 9611 brttrcl2 9752 ssttrcl 9753 ttrcltr 9754 ttrclss 9758 ttrclselem2 9764 dfac3 10159 ac7g 10512 ccatlid 14621 ccatrid 14622 ccatass 14623 ccatswrd 14703 swrdccat2 14704 ccatpfx 14736 swrdswrd 14740 swrdccatin2 14764 pfxccatin12 14768 revccat 14801 revrev 14802 repsdf2 14813 0csh0 14828 cshco 14872 wrd2pr2op 14979 wrd3tpop 14984 ofccat 15005 seqshft 15121 invf 17816 sscfn1 17865 sscfn2 17866 isssc 17868 fuchom 18017 fuchomOLD 18018 estrchomfeqhom 18191 mulgfval 19100 mulgfvalALT 19101 srhmsubc 20697 frlmsslss2 21813 subrgascl 22108 m1detdiag 22619 ptval 23594 xpsdsfn2 24404 fresf1o 32648 psgndmfi 33101 cycpmconjslem1 33157 cycpmconjslem2 33158 ply1annidllem 33709 pl1cn 33916 signsvtn0 34564 signstres 34569 bnj927 34762 fineqvac 35090 revpfxsfxrev 35100 ixpeq12dv 36199 cbvixpdavw 36261 cbvixpdavw2 36277 poimirlem1 37608 poimirlem2 37609 poimirlem3 37610 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem11 37618 poimirlem12 37619 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 dibfnN 41139 dihintcl 41327 frlmvscadiccat 42493 selvvvval 42572 ofoafg 43344 uzmptshftfval 44342 srhmsubcALTV 48169 |
Copyright terms: Public domain | W3C validator |