| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6573 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fn wfn 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 |
| This theorem is referenced by: fneq12d 6576 fncofn 6598 fnco 6599 fnprb 7142 fntpb 7143 fnpr2g 7144 undifixp 8858 brwdom2 9459 brttrcl2 9604 ssttrcl 9605 ttrcltr 9606 ttrclss 9610 ttrclselem2 9616 dfac3 10012 ac7g 10365 ccatlid 14494 ccatrid 14495 ccatass 14496 ccatswrd 14576 swrdccat2 14577 ccatpfx 14608 swrdswrd 14612 swrdccatin2 14636 pfxccatin12 14640 revccat 14673 revrev 14674 repsdf2 14685 0csh0 14700 cshco 14743 wrd2pr2op 14850 wrd3tpop 14855 ofccat 14876 seqshft 14992 invf 17675 sscfn1 17724 sscfn2 17725 isssc 17727 fuchom 17871 estrchomfeqhom 18042 mulgfval 18982 mulgfvalALT 18983 srhmsubc 20596 frlmsslss2 21713 subrgascl 22002 m1detdiag 22513 ptval 23486 xpsdsfn2 24294 fresf1o 32611 psgndmfi 33065 cycpmconjslem1 33121 cycpmconjslem2 33122 ply1annidllem 33712 pl1cn 33966 signsvtn0 34581 signstres 34586 bnj927 34779 fineqvac 35137 revpfxsfxrev 35158 ixpeq12dv 36256 cbvixpdavw 36318 cbvixpdavw2 36334 poimirlem1 37667 poimirlem2 37668 poimirlem3 37669 poimirlem4 37670 poimirlem6 37672 poimirlem7 37673 poimirlem11 37677 poimirlem12 37678 poimirlem16 37682 poimirlem17 37683 poimirlem19 37685 poimirlem20 37686 dibfnN 41201 dihintcl 41389 frlmvscadiccat 42545 selvvvval 42624 ofoafg 43393 uzmptshftfval 44385 srhmsubcALTV 48362 tposideq 48925 nelsubc3lem 49108 0funcg2 49122 fucofulem2 49349 termcfuncval 49570 termcnatval 49573 0fucterm 49581 cnelsubclem 49641 |
| Copyright terms: Public domain | W3C validator |