Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6534 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fn wfn 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-fn 6440 |
This theorem is referenced by: fneq12d 6537 fncofn 6557 fnco 6558 fnprb 7093 fntpb 7094 fnpr2g 7095 undifixp 8731 brwdom2 9341 brttrcl2 9481 ssttrcl 9482 ttrcltr 9483 ttrclss 9487 ttrclselem2 9493 dfac3 9886 ac7g 10239 ccatlid 14300 ccatrid 14301 ccatass 14302 ccatswrd 14390 swrdccat2 14391 ccatpfx 14423 swrdswrd 14427 swrdccatin2 14451 pfxccatin12 14455 revccat 14488 revrev 14489 repsdf2 14500 0csh0 14515 cshco 14558 wrd2pr2op 14665 wrd3tpop 14670 ofccat 14689 seqshft 14805 invf 17489 sscfn1 17538 sscfn2 17539 isssc 17541 fuchom 17687 fuchomOLD 17688 estrchomfeqhom 17861 mulgfval 18711 mulgfvalALT 18712 frlmsslss2 20991 subrgascl 21283 m1detdiag 21755 ptval 22730 xpsdsfn2 23540 fresf1o 30975 psgndmfi 31374 cycpmconjslem1 31430 cycpmconjslem2 31431 pl1cn 31914 signsvtn0 32558 signstres 32563 bnj927 32758 fineqvac 33075 revpfxsfxrev 33086 poimirlem1 35787 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem6 35792 poimirlem7 35793 poimirlem11 35797 poimirlem12 35798 poimirlem16 35802 poimirlem17 35803 poimirlem19 35805 poimirlem20 35806 dibfnN 39177 dihintcl 39365 frlmvscadiccat 40244 uzmptshftfval 41971 srhmsubc 45645 srhmsubcALTV 45663 |
Copyright terms: Public domain | W3C validator |