| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6578 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6489 |
| This theorem is referenced by: fneq12d 6581 fncofn 6603 fnco 6604 fnprb 7148 fntpb 7149 fnpr2g 7150 undifixp 8868 brwdom2 9484 brttrcl2 9629 ssttrcl 9630 ttrcltr 9631 ttrclss 9635 ttrclselem2 9641 dfac3 10034 ac7g 10387 ccatlid 14511 ccatrid 14512 ccatass 14513 ccatswrd 14593 swrdccat2 14594 ccatpfx 14625 swrdswrd 14629 swrdccatin2 14653 pfxccatin12 14657 revccat 14690 revrev 14691 repsdf2 14702 0csh0 14717 cshco 14761 wrd2pr2op 14868 wrd3tpop 14873 ofccat 14894 seqshft 15010 invf 17693 sscfn1 17742 sscfn2 17743 isssc 17745 fuchom 17889 estrchomfeqhom 18060 mulgfval 18966 mulgfvalALT 18967 srhmsubc 20583 frlmsslss2 21700 subrgascl 21989 m1detdiag 22500 ptval 23473 xpsdsfn2 24282 fresf1o 32588 psgndmfi 33053 cycpmconjslem1 33109 cycpmconjslem2 33110 ply1annidllem 33670 pl1cn 33924 signsvtn0 34540 signstres 34545 bnj927 34738 fineqvac 35074 revpfxsfxrev 35091 ixpeq12dv 36192 cbvixpdavw 36254 cbvixpdavw2 36270 poimirlem1 37603 poimirlem2 37604 poimirlem3 37605 poimirlem4 37606 poimirlem6 37608 poimirlem7 37609 poimirlem11 37613 poimirlem12 37614 poimirlem16 37618 poimirlem17 37619 poimirlem19 37621 poimirlem20 37622 dibfnN 41138 dihintcl 41326 frlmvscadiccat 42482 selvvvval 42561 ofoafg 43330 uzmptshftfval 44322 srhmsubcALTV 48313 tposideq 48876 nelsubc3lem 49059 0funcg2 49073 fucofulem2 49300 termcfuncval 49521 termcnatval 49524 0fucterm 49532 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |