| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6630 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 |
| This theorem is referenced by: fneq12d 6633 fncofn 6655 fnco 6656 fnprb 7200 fntpb 7201 fnpr2g 7202 undifixp 8948 brwdom2 9587 brttrcl2 9728 ssttrcl 9729 ttrcltr 9730 ttrclss 9734 ttrclselem2 9740 dfac3 10135 ac7g 10488 ccatlid 14604 ccatrid 14605 ccatass 14606 ccatswrd 14686 swrdccat2 14687 ccatpfx 14719 swrdswrd 14723 swrdccatin2 14747 pfxccatin12 14751 revccat 14784 revrev 14785 repsdf2 14796 0csh0 14811 cshco 14855 wrd2pr2op 14962 wrd3tpop 14967 ofccat 14988 seqshft 15104 invf 17781 sscfn1 17830 sscfn2 17831 isssc 17833 fuchom 17977 estrchomfeqhom 18148 mulgfval 19052 mulgfvalALT 19053 srhmsubc 20640 frlmsslss2 21735 subrgascl 22024 m1detdiag 22535 ptval 23508 xpsdsfn2 24317 fresf1o 32609 psgndmfi 33109 cycpmconjslem1 33165 cycpmconjslem2 33166 ply1annidllem 33735 pl1cn 33986 signsvtn0 34602 signstres 34607 bnj927 34800 fineqvac 35128 revpfxsfxrev 35138 ixpeq12dv 36234 cbvixpdavw 36296 cbvixpdavw2 36312 poimirlem1 37645 poimirlem2 37646 poimirlem3 37647 poimirlem4 37648 poimirlem6 37650 poimirlem7 37651 poimirlem11 37655 poimirlem12 37656 poimirlem16 37660 poimirlem17 37661 poimirlem19 37663 poimirlem20 37664 dibfnN 41175 dihintcl 41363 frlmvscadiccat 42529 selvvvval 42608 ofoafg 43378 uzmptshftfval 44370 srhmsubcALTV 48300 tposideq 48863 nelsubc3lem 49037 0funcg2 49049 fucofulem2 49222 termcfuncval 49417 termcnatval 49420 cnelsubclem 49480 |
| Copyright terms: Public domain | W3C validator |