![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6671 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 |
This theorem is referenced by: fneq12d 6674 fncofn 6696 fnco 6697 fnprb 7245 fntpb 7246 fnpr2g 7247 undifixp 8992 brwdom2 9642 brttrcl2 9783 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 dfac3 10190 ac7g 10543 ccatlid 14634 ccatrid 14635 ccatass 14636 ccatswrd 14716 swrdccat2 14717 ccatpfx 14749 swrdswrd 14753 swrdccatin2 14777 pfxccatin12 14781 revccat 14814 revrev 14815 repsdf2 14826 0csh0 14841 cshco 14885 wrd2pr2op 14992 wrd3tpop 14997 ofccat 15018 seqshft 15134 invf 17829 sscfn1 17878 sscfn2 17879 isssc 17881 fuchom 18030 fuchomOLD 18031 estrchomfeqhom 18204 mulgfval 19109 mulgfvalALT 19110 srhmsubc 20702 frlmsslss2 21818 subrgascl 22113 m1detdiag 22624 ptval 23599 xpsdsfn2 24409 fresf1o 32650 psgndmfi 33091 cycpmconjslem1 33147 cycpmconjslem2 33148 ply1annidllem 33694 pl1cn 33901 signsvtn0 34547 signstres 34552 bnj927 34745 fineqvac 35073 revpfxsfxrev 35083 ixpeq12dv 36182 cbvixpdavw 36244 cbvixpdavw2 36260 poimirlem1 37581 poimirlem2 37582 poimirlem3 37583 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem11 37591 poimirlem12 37592 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 dibfnN 41113 dihintcl 41301 frlmvscadiccat 42461 selvvvval 42540 ofoafg 43316 uzmptshftfval 44315 srhmsubcALTV 48048 |
Copyright terms: Public domain | W3C validator |