| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6613 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 |
| This theorem is referenced by: fneq12d 6616 fncofn 6638 fnco 6639 fnprb 7185 fntpb 7186 fnpr2g 7187 undifixp 8910 brwdom2 9533 brttrcl2 9674 ssttrcl 9675 ttrcltr 9676 ttrclss 9680 ttrclselem2 9686 dfac3 10081 ac7g 10434 ccatlid 14558 ccatrid 14559 ccatass 14560 ccatswrd 14640 swrdccat2 14641 ccatpfx 14673 swrdswrd 14677 swrdccatin2 14701 pfxccatin12 14705 revccat 14738 revrev 14739 repsdf2 14750 0csh0 14765 cshco 14809 wrd2pr2op 14916 wrd3tpop 14921 ofccat 14942 seqshft 15058 invf 17737 sscfn1 17786 sscfn2 17787 isssc 17789 fuchom 17933 estrchomfeqhom 18104 mulgfval 19008 mulgfvalALT 19009 srhmsubc 20596 frlmsslss2 21691 subrgascl 21980 m1detdiag 22491 ptval 23464 xpsdsfn2 24273 fresf1o 32562 psgndmfi 33062 cycpmconjslem1 33118 cycpmconjslem2 33119 ply1annidllem 33698 pl1cn 33952 signsvtn0 34568 signstres 34573 bnj927 34766 fineqvac 35094 revpfxsfxrev 35110 ixpeq12dv 36211 cbvixpdavw 36273 cbvixpdavw2 36289 poimirlem1 37622 poimirlem2 37623 poimirlem3 37624 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem11 37632 poimirlem12 37633 poimirlem16 37637 poimirlem17 37638 poimirlem19 37640 poimirlem20 37641 dibfnN 41157 dihintcl 41345 frlmvscadiccat 42501 selvvvval 42580 ofoafg 43350 uzmptshftfval 44342 srhmsubcALTV 48317 tposideq 48880 nelsubc3lem 49063 0funcg2 49077 fucofulem2 49304 termcfuncval 49525 termcnatval 49528 0fucterm 49536 cnelsubclem 49596 |
| Copyright terms: Public domain | W3C validator |