| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6610 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 |
| This theorem is referenced by: fneq12d 6613 fncofn 6635 fnco 6636 fnprb 7182 fntpb 7183 fnpr2g 7184 undifixp 8907 brwdom2 9526 brttrcl2 9667 ssttrcl 9668 ttrcltr 9669 ttrclss 9673 ttrclselem2 9679 dfac3 10074 ac7g 10427 ccatlid 14551 ccatrid 14552 ccatass 14553 ccatswrd 14633 swrdccat2 14634 ccatpfx 14666 swrdswrd 14670 swrdccatin2 14694 pfxccatin12 14698 revccat 14731 revrev 14732 repsdf2 14743 0csh0 14758 cshco 14802 wrd2pr2op 14909 wrd3tpop 14914 ofccat 14935 seqshft 15051 invf 17730 sscfn1 17779 sscfn2 17780 isssc 17782 fuchom 17926 estrchomfeqhom 18097 mulgfval 19001 mulgfvalALT 19002 srhmsubc 20589 frlmsslss2 21684 subrgascl 21973 m1detdiag 22484 ptval 23457 xpsdsfn2 24266 fresf1o 32555 psgndmfi 33055 cycpmconjslem1 33111 cycpmconjslem2 33112 ply1annidllem 33691 pl1cn 33945 signsvtn0 34561 signstres 34566 bnj927 34759 fineqvac 35087 revpfxsfxrev 35103 ixpeq12dv 36204 cbvixpdavw 36266 cbvixpdavw2 36282 poimirlem1 37615 poimirlem2 37616 poimirlem3 37617 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem11 37625 poimirlem12 37626 poimirlem16 37630 poimirlem17 37631 poimirlem19 37633 poimirlem20 37634 dibfnN 41150 dihintcl 41338 frlmvscadiccat 42494 selvvvval 42573 ofoafg 43343 uzmptshftfval 44335 srhmsubcALTV 48313 tposideq 48876 nelsubc3lem 49059 0funcg2 49073 fucofulem2 49300 termcfuncval 49521 termcnatval 49524 0fucterm 49532 cnelsubclem 49592 |
| Copyright terms: Public domain | W3C validator |