Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6509 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 |
This theorem is referenced by: fneq12d 6512 fncofn 6532 fnco 6533 fnprb 7066 fntpb 7067 fnpr2g 7068 undifixp 8680 brwdom2 9262 dfac3 9808 ac7g 10161 ccatlid 14219 ccatrid 14220 ccatass 14221 ccatswrd 14309 swrdccat2 14310 ccatpfx 14342 swrdswrd 14346 swrdccatin2 14370 pfxccatin12 14374 revccat 14407 revrev 14408 repsdf2 14419 0csh0 14434 cshco 14477 wrd2pr2op 14584 wrd3tpop 14589 ofccat 14608 seqshft 14724 invf 17397 sscfn1 17446 sscfn2 17447 isssc 17449 fuchom 17594 fuchomOLD 17595 estrchomfeqhom 17768 mulgfval 18617 mulgfvalALT 18618 frlmsslss2 20892 subrgascl 21184 m1detdiag 21654 ptval 22629 xpsdsfn2 23439 fresf1o 30867 psgndmfi 31267 cycpmconjslem1 31323 cycpmconjslem2 31324 pl1cn 31807 signsvtn0 32449 signstres 32454 bnj927 32649 fineqvac 32966 revpfxsfxrev 32977 brttrcl2 33700 ssttrcl 33701 ttrcltr 33702 ttrclss 33706 ttrclselem2 33712 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem11 35715 poimirlem12 35716 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 dibfnN 39097 dihintcl 39285 frlmvscadiccat 40163 uzmptshftfval 41853 srhmsubc 45522 srhmsubcALTV 45540 |
Copyright terms: Public domain | W3C validator |