Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version |
Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | fneq2 6426 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 Fn wfn 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-fn 6338 |
This theorem is referenced by: fneq12d 6429 fnprb 6962 fntpb 6963 fnpr2g 6964 undifixp 8516 brwdom2 9070 dfac3 9581 ac7g 9934 ccatlid 13987 ccatrid 13988 ccatass 13989 ccatswrd 14077 swrdccat2 14078 ccatpfx 14110 swrdswrd 14114 swrdccatin2 14138 pfxccatin12 14142 revccat 14175 revrev 14176 repsdf2 14187 0csh0 14202 cshco 14245 wrd2pr2op 14352 wrd3tpop 14357 ofccat 14376 seqshft 14492 invf 17097 sscfn1 17146 sscfn2 17147 isssc 17149 fuchom 17290 estrchomfeqhom 17452 mulgfval 18293 mulgfvalALT 18294 frlmsslss2 20540 subrgascl 20827 m1detdiag 21297 ptval 22270 xpsdsfn2 23080 fresf1o 30488 psgndmfi 30891 cycpmconjslem1 30947 cycpmconjslem2 30948 pl1cn 31426 signsvtn0 32068 signstres 32073 bnj927 32268 revpfxsfxrev 32593 poimirlem1 35338 poimirlem2 35339 poimirlem3 35340 poimirlem4 35341 poimirlem6 35343 poimirlem7 35344 poimirlem11 35348 poimirlem12 35349 poimirlem16 35353 poimirlem17 35354 poimirlem19 35356 poimirlem20 35357 dibfnN 38732 dihintcl 38920 frlmvscadiccat 39744 uzmptshftfval 41423 srhmsubc 45067 srhmsubcALTV 45085 |
Copyright terms: Public domain | W3C validator |