| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for function predicate with domain. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| fneq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fneq2d | ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | fneq2 6578 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Fn wfn 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fn 6489 |
| This theorem is referenced by: fneq12d 6581 fncofn 6603 fnco 6604 fnprb 7148 fntpb 7149 fnpr2g 7150 undifixp 8864 brwdom2 9466 brttrcl2 9611 ssttrcl 9612 ttrcltr 9613 ttrclss 9617 ttrclselem2 9623 dfac3 10019 ac7g 10372 ccatlid 14496 ccatrid 14497 ccatass 14498 ccatswrd 14578 swrdccat2 14579 ccatpfx 14610 swrdswrd 14614 swrdccatin2 14638 pfxccatin12 14642 revccat 14675 revrev 14676 repsdf2 14687 0csh0 14702 cshco 14745 wrd2pr2op 14852 wrd3tpop 14857 ofccat 14878 seqshft 14994 invf 17677 sscfn1 17726 sscfn2 17727 isssc 17729 fuchom 17873 estrchomfeqhom 18044 mulgfval 18984 mulgfvalALT 18985 srhmsubc 20597 frlmsslss2 21714 subrgascl 22002 m1detdiag 22513 ptval 23486 xpsdsfn2 24294 fresf1o 32615 psgndmfi 33074 cycpmconjslem1 33130 cycpmconjslem2 33131 ply1annidllem 33735 pl1cn 33989 signsvtn0 34604 signstres 34609 bnj927 34802 fineqvac 35160 revpfxsfxrev 35181 ixpeq12dv 36281 cbvixpdavw 36343 cbvixpdavw2 36359 poimirlem1 37682 poimirlem2 37683 poimirlem3 37684 poimirlem4 37685 poimirlem6 37687 poimirlem7 37688 poimirlem11 37692 poimirlem12 37693 poimirlem16 37697 poimirlem17 37698 poimirlem19 37700 poimirlem20 37701 dibfnN 41276 dihintcl 41464 frlmvscadiccat 42625 selvvvval 42704 ofoafg 43472 uzmptshftfval 44464 srhmsubcALTV 48450 tposideq 49013 nelsubc3lem 49196 0funcg2 49210 fucofulem2 49437 termcfuncval 49658 termcnatval 49661 0fucterm 49669 cnelsubclem 49729 |
| Copyright terms: Public domain | W3C validator |