MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac9s Structured version   Visualization version   GIF version

Theorem ac9s 9915
Description: An Axiom of Choice equivalent: the infinite Cartesian product of nonempty classes is nonempty. Axiom of Choice (second form) of [Enderton] p. 55 and its converse. This is a stronger version of the axiom in Enderton, with no existence requirement for the family of classes 𝐵(𝑥) (achieved via the Collection Principle cp 9319). (Contributed by NM, 29-Sep-2006.)
Hypothesis
Ref Expression
ac9.1 𝐴 ∈ V
Assertion
Ref Expression
ac9s (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac9s
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ac9.1 . . . 4 𝐴 ∈ V
21ac6s4 9912 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3 n0 4293 . . . 4 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
4 vex 3483 . . . . . 6 𝑓 ∈ V
54elixp 8466 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
65exbii 1849 . . . 4 (∃𝑓 𝑓X𝑥𝐴 𝐵 ↔ ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
73, 6bitr2i 279 . . 3 (∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ X𝑥𝐴 𝐵 ≠ ∅)
82, 7sylib 221 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → X𝑥𝐴 𝐵 ≠ ∅)
9 ixpn0 8492 . 2 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
108, 9impbii 212 1 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ X𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wex 1781  wcel 2115  wne 3014  wral 3133  Vcvv 3480  c0 4276   Fn wfn 6340  cfv 6345  Xcixp 8459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-reg 9055  ax-inf2 9103  ax-ac2 9885
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-iin 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-isom 6354  df-riota 7109  df-om 7577  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-ixp 8460  df-en 8508  df-r1 9192  df-rank 9193  df-card 9367  df-ac 9542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator