MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0elixp Structured version   Visualization version   GIF version

Theorem 0elixp 8905
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
Assertion
Ref Expression
0elixp ∅ ∈ X𝑥 ∈ ∅ 𝐴

Proof of Theorem 0elixp
StepHypRef Expression
1 0ex 5265 . . 3 ∅ ∈ V
21snid 4629 . 2 ∅ ∈ {∅}
3 ixp0x 8902 . 2 X𝑥 ∈ ∅ 𝐴 = {∅}
42, 3eleqtrri 2828 1 ∅ ∈ X𝑥 ∈ ∅ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  c0 4299  {csn 4592  Xcixp 8873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-fun 6516  df-fn 6517  df-ixp 8874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator