![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0elixp | Structured version Visualization version GIF version |
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
Ref | Expression |
---|---|
0elixp | ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5312 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4669 | . 2 ⊢ ∅ ∈ {∅} |
3 | ixp0x 8955 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | |
4 | 2, 3 | eleqtrri 2825 | 1 ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2099 ∅c0 4325 {csn 4633 Xcixp 8926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-fun 6556 df-fn 6557 df-ixp 8927 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |