| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elixp | Structured version Visualization version GIF version | ||
| Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| 0elixp | ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4615 | . 2 ⊢ ∅ ∈ {∅} |
| 3 | ixp0x 8850 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | |
| 4 | 2, 3 | eleqtrri 2830 | 1 ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∅c0 4283 {csn 4576 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-fun 6483 df-fn 6484 df-ixp 8822 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |