Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0elixp | Structured version Visualization version GIF version |
Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
Ref | Expression |
---|---|
0elixp | ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5251 | . . 3 ⊢ ∅ ∈ V | |
2 | 1 | snid 4609 | . 2 ⊢ ∅ ∈ {∅} |
3 | ixp0x 8785 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | |
4 | 2, 3 | eleqtrri 2836 | 1 ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∅c0 4269 {csn 4573 Xcixp 8756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2538 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-fun 6481 df-fn 6482 df-ixp 8757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |