| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0elixp | Structured version Visualization version GIF version | ||
| Description: Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| 0elixp | ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . . 3 ⊢ ∅ ∈ V | |
| 2 | 1 | snid 4643 | . 2 ⊢ ∅ ∈ {∅} |
| 3 | ixp0x 8945 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} | |
| 4 | 2, 3 | eleqtrri 2834 | 1 ⊢ ∅ ∈ X𝑥 ∈ ∅ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∅c0 4313 {csn 4606 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-fun 6538 df-fn 6539 df-ixp 8917 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |