| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtri1 | Structured version Visualization version GIF version | ||
| Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| ordtri1 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsseleq 6381 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 2 | ordn2lp 6372 | . . . . 5 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
| 3 | imnan 399 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
| 4 | 2, 3 | sylibr 234 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
| 5 | ordirr 6370 | . . . . 5 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
| 6 | eleq2 2823 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
| 7 | 6 | notbid 318 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
| 8 | 5, 7 | syl5ibrcom 247 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
| 9 | 4, 8 | jaao 956 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → ¬ 𝐵 ∈ 𝐴)) |
| 10 | ordtri3or 6384 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
| 11 | df-3or 1087 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
| 12 | 10, 11 | sylib 218 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
| 13 | 12 | orcomd 871 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 14 | 13 | ord 864 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 15 | 9, 14 | impbid 212 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 ∈ 𝐴)) |
| 16 | 1, 15 | bitrd 279 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: ontri1 6386 ordtri2 6387 ordtri4 6389 ordtr3 6398 ordintdif 6403 ordtri2or 6452 ordsucss 7812 ordsucsssuc 7817 ordsucuniel 7818 limsssuc 7845 ssnlim 7881 smoword 8380 tfrlem15 8406 nnaword 8639 nnawordex 8649 eldifsucnn 8676 nndomog 9227 nndomogOLD 9235 onomeneq 9237 onomeneqOLD 9238 isfinite2 9306 unfilem1 9315 wofib 9559 cantnflem1 9703 ttrcltr 9730 dmttrcl 9735 alephgeom 10096 alephdom2 10101 cflim2 10277 fin67 10409 winainflem 10707 finminlem 36336 ordeldif 43282 ordeldifsucon 43283 ordeldif1o 43284 |
| Copyright terms: Public domain | W3C validator |