MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri1 Structured version   Visualization version   GIF version

Theorem ordtri1 6397
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem ordtri1
StepHypRef Expression
1 ordsseleq 6393 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 ordn2lp 6384 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 imnan 400 . . . . 5 ((𝐴𝐵 → ¬ 𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
42, 3sylibr 233 . . . 4 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵𝐴))
5 ordirr 6382 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
6 eleq2 2822 . . . . . 6 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
76notbid 317 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐵))
85, 7syl5ibrcom 246 . . . 4 (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
94, 8jaao 953 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) → ¬ 𝐵𝐴))
10 ordtri3or 6396 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
11 df-3or 1088 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1210, 11sylib 217 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1312orcomd 869 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
1413ord 862 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
159, 14impbid 211 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ ¬ 𝐵𝐴))
161, 15bitrd 278 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wss 3948  Ord word 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367
This theorem is referenced by:  ontri1  6398  ordtri2  6399  ordtri4  6401  ordtr3  6409  ordintdif  6414  ordtri2or  6462  ordsucss  7805  ordsucsssuc  7810  ordsucuniel  7811  limsssuc  7838  ssnlim  7874  smoword  8365  tfrlem15  8391  nnaword  8626  nnawordex  8636  eldifsucnn  8662  nndomog  9215  nndomogOLD  9225  onomeneq  9227  onomeneqOLD  9228  isfinite2  9300  unfilem1  9309  wofib  9539  cantnflem1  9683  ttrcltr  9710  dmttrcl  9715  alephgeom  10076  alephdom2  10081  cflim2  10257  fin67  10389  winainflem  10687  finminlem  35198  ordeldif  41998  ordeldifsucon  41999  ordeldif1o  42000
  Copyright terms: Public domain W3C validator