Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordtri1 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 6292 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | ordn2lp 6283 | . . . . 5 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | imnan 399 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 233 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
5 | ordirr 6281 | . . . . 5 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | eleq2 2828 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
7 | 6 | notbid 317 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
8 | 5, 7 | syl5ibrcom 246 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
9 | 4, 8 | jaao 951 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → ¬ 𝐵 ∈ 𝐴)) |
10 | ordtri3or 6295 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
11 | df-3or 1086 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | sylib 217 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
13 | 12 | orcomd 867 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
14 | 13 | ord 860 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
15 | 9, 14 | impbid 211 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 ∈ 𝐴)) |
16 | 1, 15 | bitrd 278 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 Ord word 6262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 |
This theorem is referenced by: ontri1 6297 ordtri2 6298 ordtri4 6300 ordtr3 6308 ordintdif 6312 ordtri2or 6358 ordsucss 7653 ordsucsssuc 7658 ordsucuniel 7659 limsssuc 7685 ssnlim 7720 smoword 8181 tfrlem15 8207 nnaword 8434 nnawordex 8444 eldifsucnn 8468 nndomog 8964 nndomogOLD 8974 onomeneq 8975 isfinite2 9033 unfilem1 9039 wofib 9265 cantnflem1 9408 ttrcltr 9435 dmttrcl 9440 alephgeom 9822 alephdom2 9827 cflim2 10003 fin67 10135 winainflem 10433 finminlem 34486 |
Copyright terms: Public domain | W3C validator |