MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri1 Structured version   Visualization version   GIF version

Theorem ordtri1 6339
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem ordtri1
StepHypRef Expression
1 ordsseleq 6335 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 ordn2lp 6326 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 imnan 399 . . . . 5 ((𝐴𝐵 → ¬ 𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
42, 3sylibr 234 . . . 4 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵𝐴))
5 ordirr 6324 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
6 eleq2 2820 . . . . . 6 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
76notbid 318 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐵))
85, 7syl5ibrcom 247 . . . 4 (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
94, 8jaao 956 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) → ¬ 𝐵𝐴))
10 ordtri3or 6338 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
11 df-3or 1087 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1210, 11sylib 218 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1312orcomd 871 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
1413ord 864 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
159, 14impbid 212 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ ¬ 𝐵𝐴))
161, 15bitrd 279 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  wss 3897  Ord word 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309
This theorem is referenced by:  ontri1  6340  ordtri2  6341  ordtri4  6343  ordtr3  6352  ordintdif  6357  ordtri2or  6406  ordsucss  7748  ordsucsssuc  7753  ordsucuniel  7754  limsssuc  7780  ssnlim  7816  smoword  8286  tfrlem15  8311  nnaword  8542  nnawordex  8552  eldifsucnn  8579  nndomog  9122  onomeneq  9123  isfinite2  9182  unfilem1  9189  wofib  9431  cantnflem1  9579  ttrcltr  9606  dmttrcl  9611  alephgeom  9973  alephdom2  9978  cflim2  10154  fin67  10286  winainflem  10584  finminlem  36360  ordeldif  43299  ordeldifsucon  43300  ordeldif1o  43301
  Copyright terms: Public domain W3C validator