MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri1 Structured version   Visualization version   GIF version

Theorem ordtri1 6365
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem ordtri1
StepHypRef Expression
1 ordsseleq 6361 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 ordn2lp 6352 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 imnan 399 . . . . 5 ((𝐴𝐵 → ¬ 𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
42, 3sylibr 234 . . . 4 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵𝐴))
5 ordirr 6350 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
6 eleq2 2817 . . . . . 6 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
76notbid 318 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐵))
85, 7syl5ibrcom 247 . . . 4 (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
94, 8jaao 956 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) → ¬ 𝐵𝐴))
10 ordtri3or 6364 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
11 df-3or 1087 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1210, 11sylib 218 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1312orcomd 871 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
1413ord 864 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
159, 14impbid 212 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ ¬ 𝐵𝐴))
161, 15bitrd 279 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wss 3914  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by:  ontri1  6366  ordtri2  6367  ordtri4  6369  ordtr3  6378  ordintdif  6383  ordtri2or  6432  ordsucss  7793  ordsucsssuc  7798  ordsucuniel  7799  limsssuc  7826  ssnlim  7862  smoword  8335  tfrlem15  8360  nnaword  8591  nnawordex  8601  eldifsucnn  8628  nndomog  9177  onomeneq  9178  isfinite2  9245  unfilem1  9254  wofib  9498  cantnflem1  9642  ttrcltr  9669  dmttrcl  9674  alephgeom  10035  alephdom2  10040  cflim2  10216  fin67  10348  winainflem  10646  finminlem  36306  ordeldif  43247  ordeldifsucon  43248  ordeldif1o  43249
  Copyright terms: Public domain W3C validator