MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtri1 Structured version   Visualization version   GIF version

Theorem ordtri1 6314
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ordtri1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))

Proof of Theorem ordtri1
StepHypRef Expression
1 ordsseleq 6310 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
2 ordn2lp 6301 . . . . 5 (Ord 𝐴 → ¬ (𝐴𝐵𝐵𝐴))
3 imnan 401 . . . . 5 ((𝐴𝐵 → ¬ 𝐵𝐴) ↔ ¬ (𝐴𝐵𝐵𝐴))
42, 3sylibr 233 . . . 4 (Ord 𝐴 → (𝐴𝐵 → ¬ 𝐵𝐴))
5 ordirr 6299 . . . . 5 (Ord 𝐵 → ¬ 𝐵𝐵)
6 eleq2 2825 . . . . . 6 (𝐴 = 𝐵 → (𝐵𝐴𝐵𝐵))
76notbid 318 . . . . 5 (𝐴 = 𝐵 → (¬ 𝐵𝐴 ↔ ¬ 𝐵𝐵))
85, 7syl5ibrcom 247 . . . 4 (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵𝐴))
94, 8jaao 953 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) → ¬ 𝐵𝐴))
10 ordtri3or 6313 . . . . . 6 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐴 = 𝐵𝐵𝐴))
11 df-3or 1088 . . . . . 6 ((𝐴𝐵𝐴 = 𝐵𝐵𝐴) ↔ ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1210, 11sylib 217 . . . . 5 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ∨ 𝐵𝐴))
1312orcomd 869 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵𝐴 ∨ (𝐴𝐵𝐴 = 𝐵)))
1413ord 862 . . 3 ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵)))
159, 14impbid 211 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴𝐵𝐴 = 𝐵) ↔ ¬ 𝐵𝐴))
161, 15bitrd 279 1 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ ¬ 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  w3o 1086   = wceq 1539  wcel 2104  wss 3892  Ord word 6280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-tr 5199  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284
This theorem is referenced by:  ontri1  6315  ordtri2  6316  ordtri4  6318  ordtr3  6326  ordintdif  6330  ordtri2or  6378  ordsucss  7697  ordsucsssuc  7702  ordsucuniel  7703  limsssuc  7729  ssnlim  7764  smoword  8228  tfrlem15  8254  nnaword  8489  nnawordex  8499  eldifsucnn  8525  nndomog  9037  nndomogOLD  9047  onomeneq  9049  onomeneqOLD  9050  isfinite2  9116  unfilem1  9122  wofib  9348  cantnflem1  9491  ttrcltr  9518  dmttrcl  9523  alephgeom  9884  alephdom2  9889  cflim2  10065  fin67  10197  winainflem  10495  finminlem  34552
  Copyright terms: Public domain W3C validator