![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtri1 | Structured version Visualization version GIF version |
Description: A trichotomy law for ordinals. (Contributed by NM, 25-Mar-1995.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
ordtri1 | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsseleq 5895 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
2 | ordn2lp 5886 | . . . . 5 ⊢ (Ord 𝐴 → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
3 | imnan 386 | . . . . 5 ⊢ ((𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) ↔ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | |
4 | 2, 3 | sylibr 224 | . . . 4 ⊢ (Ord 𝐴 → (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
5 | ordirr 5884 | . . . . 5 ⊢ (Ord 𝐵 → ¬ 𝐵 ∈ 𝐵) | |
6 | eleq2 2839 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ 𝐵)) | |
7 | 6 | notbid 307 | . . . . 5 ⊢ (𝐴 = 𝐵 → (¬ 𝐵 ∈ 𝐴 ↔ ¬ 𝐵 ∈ 𝐵)) |
8 | 5, 7 | syl5ibrcom 237 | . . . 4 ⊢ (Ord 𝐵 → (𝐴 = 𝐵 → ¬ 𝐵 ∈ 𝐴)) |
9 | 4, 8 | jaao 919 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) → ¬ 𝐵 ∈ 𝐴)) |
10 | ordtri3or 5898 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴)) | |
11 | df-3or 1072 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ∈ 𝐴) ↔ ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | sylib 208 | . . . . 5 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ∨ 𝐵 ∈ 𝐴)) |
13 | 12 | orcomd 850 | . . . 4 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐵 ∈ 𝐴 ∨ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
14 | 13 | ord 843 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (¬ 𝐵 ∈ 𝐴 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
15 | 9, 14 | impbid 202 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵) ↔ ¬ 𝐵 ∈ 𝐴)) |
16 | 1, 15 | bitrd 268 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 826 ∨ w3o 1070 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 Ord word 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-tr 4887 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-ord 5869 |
This theorem is referenced by: ontri1 5900 ordtri2 5901 ordtri4 5904 ordtr3 5912 ordtr3OLD 5913 ordintdif 5917 ordtri2or 5965 ordsucss 7165 ordsucsssuc 7170 ordsucuniel 7171 limsssuc 7197 ssnlim 7230 smoword 7616 tfrlem15 7641 nnaword 7861 nnawordex 7871 onomeneq 8306 nndomo 8310 isfinite2 8374 unfilem1 8380 wofib 8606 cantnflem1 8750 alephgeom 9105 alephdom2 9110 cflim2 9287 fin67 9419 winainflem 9717 finminlem 32649 |
Copyright terms: Public domain | W3C validator |