Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofpreima2 Structured version   Visualization version   GIF version

Theorem ofpreima2 30403
 Description: Express the preimage of a function operation as a union of preimages. This version of ofpreima 30402 iterates the union over a smaller set. (Contributed by Thierry Arnoux, 8-Mar-2018.)
Hypotheses
Ref Expression
ofpreima.1 (𝜑𝐹:𝐴𝐵)
ofpreima.2 (𝜑𝐺:𝐴𝐶)
ofpreima.3 (𝜑𝐴𝑉)
ofpreima.4 (𝜑𝑅 Fn (𝐵 × 𝐶))
Assertion
Ref Expression
ofpreima2 (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
Distinct variable groups:   𝐴,𝑝   𝐷,𝑝   𝐹,𝑝   𝐺,𝑝   𝑅,𝑝   𝜑,𝑝
Allowed substitution hints:   𝐵(𝑝)   𝐶(𝑝)   𝑉(𝑝)

Proof of Theorem ofpreima2
StepHypRef Expression
1 ofpreima.1 . . . 4 (𝜑𝐹:𝐴𝐵)
2 ofpreima.2 . . . 4 (𝜑𝐺:𝐴𝐶)
3 ofpreima.3 . . . 4 (𝜑𝐴𝑉)
4 ofpreima.4 . . . 4 (𝜑𝑅 Fn (𝐵 × 𝐶))
51, 2, 3, 4ofpreima 30402 . . 3 (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = 𝑝 ∈ (𝑅𝐷)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
6 inundif 4425 . . . . 5 (((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺)) ∪ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) = (𝑅𝐷)
7 iuneq1 4926 . . . . 5 ((((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺)) ∪ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) = (𝑅𝐷) → 𝑝 ∈ (((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺)) ∪ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺)))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = 𝑝 ∈ (𝑅𝐷)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
86, 7ax-mp 5 . . . 4 𝑝 ∈ (((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺)) ∪ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺)))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = 𝑝 ∈ (𝑅𝐷)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))
9 iunxun 5007 . . . 4 𝑝 ∈ (((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺)) ∪ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺)))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
108, 9eqtr3i 2844 . . 3 𝑝 ∈ (𝑅𝐷)((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
115, 10syl6eq 2870 . 2 (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))))
12 simpr 487 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺)))
1312eldifbd 3947 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → ¬ 𝑝 ∈ (ran 𝐹 × ran 𝐺))
14 cnvimass 5942 . . . . . . . . . . . . . 14 (𝑅𝐷) ⊆ dom 𝑅
15 fndm 6448 . . . . . . . . . . . . . . 15 (𝑅 Fn (𝐵 × 𝐶) → dom 𝑅 = (𝐵 × 𝐶))
164, 15syl 17 . . . . . . . . . . . . . 14 (𝜑 → dom 𝑅 = (𝐵 × 𝐶))
1714, 16sseqtrid 4017 . . . . . . . . . . . . 13 (𝜑 → (𝑅𝐷) ⊆ (𝐵 × 𝐶))
1817ssdifssd 4117 . . . . . . . . . . . 12 (𝜑 → ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺)) ⊆ (𝐵 × 𝐶))
1918sselda 3965 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → 𝑝 ∈ (𝐵 × 𝐶))
20 1st2nd2 7720 . . . . . . . . . . 11 (𝑝 ∈ (𝐵 × 𝐶) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
21 elxp6 7715 . . . . . . . . . . . 12 (𝑝 ∈ (ran 𝐹 × ran 𝐺) ↔ (𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩ ∧ ((1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺)))
2221simplbi2 503 . . . . . . . . . . 11 (𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩ → (((1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) → 𝑝 ∈ (ran 𝐹 × ran 𝐺)))
2319, 20, 223syl 18 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → (((1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) → 𝑝 ∈ (ran 𝐹 × ran 𝐺)))
2413, 23mtod 200 . . . . . . . . 9 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → ¬ ((1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺))
25 ianor 977 . . . . . . . . 9 (¬ ((1st𝑝) ∈ ran 𝐹 ∧ (2nd𝑝) ∈ ran 𝐺) ↔ (¬ (1st𝑝) ∈ ran 𝐹 ∨ ¬ (2nd𝑝) ∈ ran 𝐺))
2624, 25sylib 220 . . . . . . . 8 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → (¬ (1st𝑝) ∈ ran 𝐹 ∨ ¬ (2nd𝑝) ∈ ran 𝐺))
27 disjsn 4639 . . . . . . . . 9 ((ran 𝐹 ∩ {(1st𝑝)}) = ∅ ↔ ¬ (1st𝑝) ∈ ran 𝐹)
28 disjsn 4639 . . . . . . . . 9 ((ran 𝐺 ∩ {(2nd𝑝)}) = ∅ ↔ ¬ (2nd𝑝) ∈ ran 𝐺)
2927, 28orbi12i 910 . . . . . . . 8 (((ran 𝐹 ∩ {(1st𝑝)}) = ∅ ∨ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅) ↔ (¬ (1st𝑝) ∈ ran 𝐹 ∨ ¬ (2nd𝑝) ∈ ran 𝐺))
3026, 29sylibr 236 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → ((ran 𝐹 ∩ {(1st𝑝)}) = ∅ ∨ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅))
311ffnd 6508 . . . . . . . . 9 (𝜑𝐹 Fn 𝐴)
32 dffn3 6518 . . . . . . . . 9 (𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
3331, 32sylib 220 . . . . . . . 8 (𝜑𝐹:𝐴⟶ran 𝐹)
342ffnd 6508 . . . . . . . . . 10 (𝜑𝐺 Fn 𝐴)
35 dffn3 6518 . . . . . . . . . 10 (𝐺 Fn 𝐴𝐺:𝐴⟶ran 𝐺)
3634, 35sylib 220 . . . . . . . . 9 (𝜑𝐺:𝐴⟶ran 𝐺)
3736adantr 483 . . . . . . . 8 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → 𝐺:𝐴⟶ran 𝐺)
38 fimacnvdisj 6550 . . . . . . . . . . 11 ((𝐹:𝐴⟶ran 𝐹 ∧ (ran 𝐹 ∩ {(1st𝑝)}) = ∅) → (𝐹 “ {(1st𝑝)}) = ∅)
39 ineq1 4179 . . . . . . . . . . . 12 ((𝐹 “ {(1st𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = (∅ ∩ (𝐺 “ {(2nd𝑝)})))
40 0in 4345 . . . . . . . . . . . 12 (∅ ∩ (𝐺 “ {(2nd𝑝)})) = ∅
4139, 40syl6eq 2870 . . . . . . . . . . 11 ((𝐹 “ {(1st𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
4238, 41syl 17 . . . . . . . . . 10 ((𝐹:𝐴⟶ran 𝐹 ∧ (ran 𝐹 ∩ {(1st𝑝)}) = ∅) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
4342ex 415 . . . . . . . . 9 (𝐹:𝐴⟶ran 𝐹 → ((ran 𝐹 ∩ {(1st𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅))
44 fimacnvdisj 6550 . . . . . . . . . . 11 ((𝐺:𝐴⟶ran 𝐺 ∧ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅) → (𝐺 “ {(2nd𝑝)}) = ∅)
45 ineq2 4181 . . . . . . . . . . . 12 ((𝐺 “ {(2nd𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ((𝐹 “ {(1st𝑝)}) ∩ ∅))
46 in0 4343 . . . . . . . . . . . 12 ((𝐹 “ {(1st𝑝)}) ∩ ∅) = ∅
4745, 46syl6eq 2870 . . . . . . . . . . 11 ((𝐺 “ {(2nd𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
4844, 47syl 17 . . . . . . . . . 10 ((𝐺:𝐴⟶ran 𝐺 ∧ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
4948ex 415 . . . . . . . . 9 (𝐺:𝐴⟶ran 𝐺 → ((ran 𝐺 ∩ {(2nd𝑝)}) = ∅ → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅))
5043, 49jaao 950 . . . . . . . 8 ((𝐹:𝐴⟶ran 𝐹𝐺:𝐴⟶ran 𝐺) → (((ran 𝐹 ∩ {(1st𝑝)}) = ∅ ∨ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅))
5133, 37, 50syl2an2r 683 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → (((ran 𝐹 ∩ {(1st𝑝)}) = ∅ ∨ (ran 𝐺 ∩ {(2nd𝑝)}) = ∅) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅))
5230, 51mpd 15 . . . . . 6 ((𝜑𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))) → ((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
5352iuneq2dv 4934 . . . . 5 (𝜑 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))∅)
54 iun0 4976 . . . . 5 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))∅ = ∅
5553, 54syl6eq 2870 . . . 4 (𝜑 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) = ∅)
5655uneq2d 4137 . . 3 (𝜑 → ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ ∅))
57 un0 4342 . . 3 ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ ∅) = 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))
5856, 57syl6eq 2870 . 2 (𝜑 → ( 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})) ∪ 𝑝 ∈ ((𝑅𝐷) ∖ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)}))) = 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
5911, 58eqtrd 2854 1 (𝜑 → ((𝐹f 𝑅𝐺) “ 𝐷) = 𝑝 ∈ ((𝑅𝐷) ∩ (ran 𝐹 × ran 𝐺))((𝐹 “ {(1st𝑝)}) ∩ (𝐺 “ {(2nd𝑝)})))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   ∨ wo 843   = wceq 1530   ∈ wcel 2107   ∖ cdif 3931   ∪ cun 3932   ∩ cin 3933  ∅c0 4289  {csn 4559  ⟨cop 4565  ∪ ciun 4910   × cxp 5546  ◡ccnv 5547  dom cdm 5548  ran crn 5549   “ cima 5551   Fn wfn 6343  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   ∘f cof 7399  1st c1st 7679  2nd c2nd 7680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-1st 7681  df-2nd 7682 This theorem is referenced by:  sibfof  31586
 Copyright terms: Public domain W3C validator