MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9845
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))

Proof of Theorem rankunb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9805 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) ↔ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))
2 rankval3b 9821 . . . . . . 7 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦})
31, 2sylbi 216 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦})
43eleq2d 2820 . . . . 5 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ π‘₯ ∈ ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦}))
5 vex 3479 . . . . . 6 π‘₯ ∈ V
65elintrab 4965 . . . . 5 (π‘₯ ∈ ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦} ↔ βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦))
74, 6bitrdi 287 . . . 4 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦)))
8 elun 4149 . . . . . . 7 (π‘₯ ∈ (𝐴 βˆͺ 𝐡) ↔ (π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡))
9 rankelb 9819 . . . . . . . . 9 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΄)))
10 elun1 4177 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ (rankβ€˜π΄) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
119, 10syl6 35 . . . . . . . 8 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
12 rankelb 9819 . . . . . . . . 9 (𝐡 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐡 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΅)))
13 elun2 4178 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ (rankβ€˜π΅) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
1412, 13syl6 35 . . . . . . . 8 (𝐡 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐡 β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
1511, 14jaao 954 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ ((π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
168, 15biimtrid 241 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
1716ralrimiv 3146 . . . . 5 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
18 rankon 9790 . . . . . . 7 (rankβ€˜π΄) ∈ On
19 rankon 9790 . . . . . . 7 (rankβ€˜π΅) ∈ On
2018, 19onun2i 6487 . . . . . 6 ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ On
21 eleq2 2823 . . . . . . . . 9 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ ((rankβ€˜π‘₯) ∈ 𝑦 ↔ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2221ralbidv 3178 . . . . . . . 8 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 ↔ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
23 eleq2 2823 . . . . . . . 8 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2422, 23imbi12d 345 . . . . . . 7 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ ((βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) ↔ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
2524rspcv 3609 . . . . . 6 (((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ On β†’ (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
2620, 25ax-mp 5 . . . . 5 (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2717, 26syl5com 31 . . . 4 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
287, 27sylbid 239 . . 3 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2928ssrdv 3989 . 2 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
30 ssun1 4173 . . . . 5 𝐴 βŠ† (𝐴 βˆͺ 𝐡)
31 rankssb 9843 . . . . 5 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (𝐴 βŠ† (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π΄) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡))))
3230, 31mpi 20 . . . 4 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π΄) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
33 ssun2 4174 . . . . 5 𝐡 βŠ† (𝐴 βˆͺ 𝐡)
34 rankssb 9843 . . . . 5 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (𝐡 βŠ† (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π΅) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡))))
3533, 34mpi 20 . . . 4 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π΅) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3632, 35unssd 4187 . . 3 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
371, 36sylbi 216 . 2 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3829, 37eqssd 4000 1 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {crab 3433   βˆͺ cun 3947   βŠ† wss 3949  βˆͺ cuni 4909  βˆ© cint 4951   β€œ cima 5680  Oncon0 6365  β€˜cfv 6544  π‘…1cr1 9757  rankcrnk 9758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-r1 9759  df-rank 9760
This theorem is referenced by:  rankprb  9846  rankopb  9847  rankun  9851  rankaltopb  34951
  Copyright terms: Public domain W3C validator