MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9608
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankunb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9568 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
2 rankval3b 9584 . . . . . . 7 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
31, 2sylbi 216 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
43eleq2d 2824 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ 𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦}))
5 vex 3436 . . . . . 6 𝑥 ∈ V
65elintrab 4891 . . . . 5 (𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦} ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦))
74, 6bitrdi 287 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦)))
8 elun 4083 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 rankelb 9582 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
10 elun1 4110 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐴) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
119, 10syl6 35 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
12 rankelb 9582 . . . . . . . . 9 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ (rank‘𝐵)))
13 elun2 4111 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13syl6 35 . . . . . . . 8 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1511, 14jaao 952 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((𝑥𝐴𝑥𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
168, 15syl5bi 241 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (𝐴𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1716ralrimiv 3102 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
18 rankon 9553 . . . . . . 7 (rank‘𝐴) ∈ On
19 rankon 9553 . . . . . . 7 (rank‘𝐵) ∈ On
2018, 19onun2i 6382 . . . . . 6 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On
21 eleq2 2827 . . . . . . . . 9 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((rank‘𝑥) ∈ 𝑦 ↔ (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2221ralbidv 3112 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
23 eleq2 2827 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑥𝑦𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2422, 23imbi12d 345 . . . . . . 7 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) ↔ (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2524rspcv 3557 . . . . . 6 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2620, 25ax-mp 5 . . . . 5 (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2717, 26syl5com 31 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
287, 27sylbid 239 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2928ssrdv 3927 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)))
30 ssun1 4106 . . . . 5 𝐴 ⊆ (𝐴𝐵)
31 rankssb 9606 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝐴𝐵) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵))))
3230, 31mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵)))
33 ssun2 4107 . . . . 5 𝐵 ⊆ (𝐴𝐵)
34 rankssb 9606 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐵 ⊆ (𝐴𝐵) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵))))
3533, 34mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵)))
3632, 35unssd 4120 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
371, 36sylbi 216 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
3829, 37eqssd 3938 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cun 3885  wss 3887   cuni 4839   cint 4879  cima 5592  Oncon0 6266  cfv 6433  𝑅1cr1 9520  rankcrnk 9521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-r1 9522  df-rank 9523
This theorem is referenced by:  rankprb  9609  rankopb  9610  rankun  9614  rankaltopb  34281
  Copyright terms: Public domain W3C validator