MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9919
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankunb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9879 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
2 rankval3b 9895 . . . . . . 7 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
31, 2sylbi 217 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
43eleq2d 2830 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ 𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦}))
5 vex 3492 . . . . . 6 𝑥 ∈ V
65elintrab 4984 . . . . 5 (𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦} ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦))
74, 6bitrdi 287 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦)))
8 elun 4176 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 rankelb 9893 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
10 elun1 4205 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐴) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
119, 10syl6 35 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
12 rankelb 9893 . . . . . . . . 9 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ (rank‘𝐵)))
13 elun2 4206 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13syl6 35 . . . . . . . 8 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1511, 14jaao 955 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((𝑥𝐴𝑥𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
168, 15biimtrid 242 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (𝐴𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1716ralrimiv 3151 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
18 rankon 9864 . . . . . . 7 (rank‘𝐴) ∈ On
19 rankon 9864 . . . . . . 7 (rank‘𝐵) ∈ On
2018, 19onun2i 6517 . . . . . 6 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On
21 eleq2 2833 . . . . . . . . 9 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((rank‘𝑥) ∈ 𝑦 ↔ (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2221ralbidv 3184 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
23 eleq2 2833 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑥𝑦𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2422, 23imbi12d 344 . . . . . . 7 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) ↔ (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2524rspcv 3631 . . . . . 6 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2620, 25ax-mp 5 . . . . 5 (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2717, 26syl5com 31 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
287, 27sylbid 240 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2928ssrdv 4014 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)))
30 ssun1 4201 . . . . 5 𝐴 ⊆ (𝐴𝐵)
31 rankssb 9917 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝐴𝐵) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵))))
3230, 31mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵)))
33 ssun2 4202 . . . . 5 𝐵 ⊆ (𝐴𝐵)
34 rankssb 9917 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐵 ⊆ (𝐴𝐵) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵))))
3533, 34mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵)))
3632, 35unssd 4215 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
371, 36sylbi 217 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
3829, 37eqssd 4026 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cun 3974  wss 3976   cuni 4931   cint 4970  cima 5703  Oncon0 6395  cfv 6573  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  rankprb  9920  rankopb  9921  rankun  9925  rankaltopb  35943
  Copyright terms: Public domain W3C validator