MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9888
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankunb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9848 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
2 rankval3b 9864 . . . . . . 7 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
31, 2sylbi 217 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
43eleq2d 2825 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ 𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦}))
5 vex 3482 . . . . . 6 𝑥 ∈ V
65elintrab 4965 . . . . 5 (𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦} ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦))
74, 6bitrdi 287 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦)))
8 elun 4163 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 rankelb 9862 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
10 elun1 4192 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐴) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
119, 10syl6 35 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
12 rankelb 9862 . . . . . . . . 9 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ (rank‘𝐵)))
13 elun2 4193 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13syl6 35 . . . . . . . 8 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1511, 14jaao 956 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((𝑥𝐴𝑥𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
168, 15biimtrid 242 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (𝐴𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1716ralrimiv 3143 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
18 rankon 9833 . . . . . . 7 (rank‘𝐴) ∈ On
19 rankon 9833 . . . . . . 7 (rank‘𝐵) ∈ On
2018, 19onun2i 6508 . . . . . 6 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On
21 eleq2 2828 . . . . . . . . 9 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((rank‘𝑥) ∈ 𝑦 ↔ (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2221ralbidv 3176 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
23 eleq2 2828 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑥𝑦𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2422, 23imbi12d 344 . . . . . . 7 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) ↔ (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2524rspcv 3618 . . . . . 6 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2620, 25ax-mp 5 . . . . 5 (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2717, 26syl5com 31 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
287, 27sylbid 240 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2928ssrdv 4001 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)))
30 ssun1 4188 . . . . 5 𝐴 ⊆ (𝐴𝐵)
31 rankssb 9886 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝐴𝐵) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵))))
3230, 31mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵)))
33 ssun2 4189 . . . . 5 𝐵 ⊆ (𝐴𝐵)
34 rankssb 9886 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐵 ⊆ (𝐴𝐵) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵))))
3533, 34mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵)))
3632, 35unssd 4202 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
371, 36sylbi 217 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
3829, 37eqssd 4013 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  {crab 3433  cun 3961  wss 3963   cuni 4912   cint 4951  cima 5692  Oncon0 6386  cfv 6563  𝑅1cr1 9800  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  rankprb  9889  rankopb  9890  rankun  9894  rankaltopb  35961
  Copyright terms: Public domain W3C validator