MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9847
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))

Proof of Theorem rankunb
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9807 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) ↔ (𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On))
2 rankval3b 9823 . . . . . . 7 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦})
31, 2sylbi 216 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦})
43eleq2d 2817 . . . . 5 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ π‘₯ ∈ ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦}))
5 vex 3476 . . . . . 6 π‘₯ ∈ V
65elintrab 4963 . . . . 5 (π‘₯ ∈ ∩ {𝑦 ∈ On ∣ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦} ↔ βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦))
74, 6bitrdi 286 . . . 4 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) ↔ βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦)))
8 elun 4147 . . . . . . 7 (π‘₯ ∈ (𝐴 βˆͺ 𝐡) ↔ (π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡))
9 rankelb 9821 . . . . . . . . 9 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΄)))
10 elun1 4175 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ (rankβ€˜π΄) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
119, 10syl6 35 . . . . . . . 8 (𝐴 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐴 β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
12 rankelb 9821 . . . . . . . . 9 (𝐡 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐡 β†’ (rankβ€˜π‘₯) ∈ (rankβ€˜π΅)))
13 elun2 4176 . . . . . . . . 9 ((rankβ€˜π‘₯) ∈ (rankβ€˜π΅) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
1412, 13syl6 35 . . . . . . . 8 (𝐡 ∈ βˆͺ (𝑅1 β€œ On) β†’ (π‘₯ ∈ 𝐡 β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
1511, 14jaao 951 . . . . . . 7 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ ((π‘₯ ∈ 𝐴 ∨ π‘₯ ∈ 𝐡) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
168, 15biimtrid 241 . . . . . 6 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
1716ralrimiv 3143 . . . . 5 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
18 rankon 9792 . . . . . . 7 (rankβ€˜π΄) ∈ On
19 rankon 9792 . . . . . . 7 (rankβ€˜π΅) ∈ On
2018, 19onun2i 6485 . . . . . 6 ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ On
21 eleq2 2820 . . . . . . . . 9 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ ((rankβ€˜π‘₯) ∈ 𝑦 ↔ (rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2221ralbidv 3175 . . . . . . . 8 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 ↔ βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
23 eleq2 2820 . . . . . . . 8 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ (π‘₯ ∈ 𝑦 ↔ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2422, 23imbi12d 343 . . . . . . 7 (𝑦 = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ ((βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) ↔ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
2524rspcv 3607 . . . . . 6 (((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) ∈ On β†’ (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))))
2620, 25ax-mp 5 . . . . 5 (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2717, 26syl5com 31 . . . 4 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (βˆ€π‘¦ ∈ On (βˆ€π‘₯ ∈ (𝐴 βˆͺ 𝐡)(rankβ€˜π‘₯) ∈ 𝑦 β†’ π‘₯ ∈ 𝑦) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
287, 27sylbid 239 . . 3 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (π‘₯ ∈ (rankβ€˜(𝐴 βˆͺ 𝐡)) β†’ π‘₯ ∈ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅))))
2928ssrdv 3987 . 2 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) βŠ† ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
30 ssun1 4171 . . . . 5 𝐴 βŠ† (𝐴 βˆͺ 𝐡)
31 rankssb 9845 . . . . 5 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (𝐴 βŠ† (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π΄) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡))))
3230, 31mpi 20 . . . 4 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π΄) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
33 ssun2 4172 . . . . 5 𝐡 βŠ† (𝐴 βˆͺ 𝐡)
34 rankssb 9845 . . . . 5 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (𝐡 βŠ† (𝐴 βˆͺ 𝐡) β†’ (rankβ€˜π΅) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡))))
3533, 34mpi 20 . . . 4 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ (rankβ€˜π΅) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3632, 35unssd 4185 . . 3 ((𝐴 βˆͺ 𝐡) ∈ βˆͺ (𝑅1 β€œ On) β†’ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
371, 36sylbi 216 . 2 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)) βŠ† (rankβ€˜(𝐴 βˆͺ 𝐡)))
3829, 37eqssd 3998 1 ((𝐴 ∈ βˆͺ (𝑅1 β€œ On) ∧ 𝐡 ∈ βˆͺ (𝑅1 β€œ On)) β†’ (rankβ€˜(𝐴 βˆͺ 𝐡)) = ((rankβ€˜π΄) βˆͺ (rankβ€˜π΅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430   βˆͺ cun 3945   βŠ† wss 3947  βˆͺ cuni 4907  βˆ© cint 4949   β€œ cima 5678  Oncon0 6363  β€˜cfv 6542  π‘…1cr1 9759  rankcrnk 9760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-r1 9761  df-rank 9762
This theorem is referenced by:  rankprb  9848  rankopb  9849  rankun  9853  rankaltopb  35255
  Copyright terms: Public domain W3C validator