MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankunb Structured version   Visualization version   GIF version

Theorem rankunb 9864
Description: The rank of the union of two sets. Theorem 15.17(iii) of [Monk1] p. 112. (Contributed by Mario Carneiro, 10-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankunb ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))

Proof of Theorem rankunb
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unwf 9824 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) ↔ (𝐴𝐵) ∈ (𝑅1 “ On))
2 rankval3b 9840 . . . . . . 7 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
31, 2sylbi 217 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦})
43eleq2d 2820 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ 𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦}))
5 vex 3463 . . . . . 6 𝑥 ∈ V
65elintrab 4936 . . . . 5 (𝑥 {𝑦 ∈ On ∣ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦} ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦))
74, 6bitrdi 287 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) ↔ ∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦)))
8 elun 4128 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
9 rankelb 9838 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
10 elun1 4157 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐴) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
119, 10syl6 35 . . . . . . . 8 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
12 rankelb 9838 . . . . . . . . 9 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ (rank‘𝐵)))
13 elun2 4158 . . . . . . . . 9 ((rank‘𝑥) ∈ (rank‘𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
1412, 13syl6 35 . . . . . . . 8 (𝐵 (𝑅1 “ On) → (𝑥𝐵 → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1511, 14jaao 956 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((𝑥𝐴𝑥𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
168, 15biimtrid 242 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (𝐴𝐵) → (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
1716ralrimiv 3131 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))
18 rankon 9809 . . . . . . 7 (rank‘𝐴) ∈ On
19 rankon 9809 . . . . . . 7 (rank‘𝐵) ∈ On
2018, 19onun2i 6476 . . . . . 6 ((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On
21 eleq2 2823 . . . . . . . . 9 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((rank‘𝑥) ∈ 𝑦 ↔ (rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2221ralbidv 3163 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦 ↔ ∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
23 eleq2 2823 . . . . . . . 8 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → (𝑥𝑦𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2422, 23imbi12d 344 . . . . . . 7 (𝑦 = ((rank‘𝐴) ∪ (rank‘𝐵)) → ((∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) ↔ (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2524rspcv 3597 . . . . . 6 (((rank‘𝐴) ∪ (rank‘𝐵)) ∈ On → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵)))))
2620, 25ax-mp 5 . . . . 5 (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ ((rank‘𝐴) ∪ (rank‘𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2717, 26syl5com 31 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (∀𝑦 ∈ On (∀𝑥 ∈ (𝐴𝐵)(rank‘𝑥) ∈ 𝑦𝑥𝑦) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
287, 27sylbid 240 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (𝑥 ∈ (rank‘(𝐴𝐵)) → 𝑥 ∈ ((rank‘𝐴) ∪ (rank‘𝐵))))
2928ssrdv 3964 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) ⊆ ((rank‘𝐴) ∪ (rank‘𝐵)))
30 ssun1 4153 . . . . 5 𝐴 ⊆ (𝐴𝐵)
31 rankssb 9862 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐴 ⊆ (𝐴𝐵) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵))))
3230, 31mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐴) ⊆ (rank‘(𝐴𝐵)))
33 ssun2 4154 . . . . 5 𝐵 ⊆ (𝐴𝐵)
34 rankssb 9862 . . . . 5 ((𝐴𝐵) ∈ (𝑅1 “ On) → (𝐵 ⊆ (𝐴𝐵) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵))))
3533, 34mpi 20 . . . 4 ((𝐴𝐵) ∈ (𝑅1 “ On) → (rank‘𝐵) ⊆ (rank‘(𝐴𝐵)))
3632, 35unssd 4167 . . 3 ((𝐴𝐵) ∈ (𝑅1 “ On) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
371, 36sylbi 217 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → ((rank‘𝐴) ∪ (rank‘𝐵)) ⊆ (rank‘(𝐴𝐵)))
3829, 37eqssd 3976 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘(𝐴𝐵)) = ((rank‘𝐴) ∪ (rank‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cun 3924  wss 3926   cuni 4883   cint 4922  cima 5657  Oncon0 6352  cfv 6531  𝑅1cr1 9776  rankcrnk 9777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-r1 9778  df-rank 9779
This theorem is referenced by:  rankprb  9865  rankopb  9866  rankun  9870  rankaltopb  35997
  Copyright terms: Public domain W3C validator