![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordun | Structured version Visualization version GIF version |
Description: The maximum (i.e., union) of two ordinals is ordinal. Exercise 12 of [TakeutiZaring] p. 40. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordun | ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) | |
2 | ordequn 6467 | . . 3 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∪ 𝐵) = (𝐴 ∪ 𝐵) → ((𝐴 ∪ 𝐵) = 𝐴 ∨ (𝐴 ∪ 𝐵) = 𝐵))) | |
3 | 1, 2 | mpi 20 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → ((𝐴 ∪ 𝐵) = 𝐴 ∨ (𝐴 ∪ 𝐵) = 𝐵)) |
4 | ordeq 6371 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = 𝐴 → (Ord (𝐴 ∪ 𝐵) ↔ Ord 𝐴)) | |
5 | 4 | biimprcd 249 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ∪ 𝐵) = 𝐴 → Ord (𝐴 ∪ 𝐵))) |
6 | ordeq 6371 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) = 𝐵 → (Ord (𝐴 ∪ 𝐵) ↔ Ord 𝐵)) | |
7 | 6 | biimprcd 249 | . . 3 ⊢ (Ord 𝐵 → ((𝐴 ∪ 𝐵) = 𝐵 → Ord (𝐴 ∪ 𝐵))) |
8 | 5, 7 | jaao 953 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (((𝐴 ∪ 𝐵) = 𝐴 ∨ (𝐴 ∪ 𝐵) = 𝐵) → Ord (𝐴 ∪ 𝐵))) |
9 | 3, 8 | mpd 15 | 1 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → Ord (𝐴 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∪ cun 3946 Ord word 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 |
This theorem is referenced by: ordsucun 7815 r0weon 10009 |
Copyright terms: Public domain | W3C validator |