MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruun Structured version   Visualization version   GIF version

Theorem gruun 9943
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruun ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem gruun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4793 . . 3 {𝐴, 𝐵} = 𝑥 ∈ {𝐴, 𝐵}𝑥
2 uniprg 4672 . . . 4 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
323adant1 1166 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 3syl5reqr 2876 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) = 𝑥 ∈ {𝐴, 𝐵}𝑥)
5 simp1 1172 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
6 grupr 9934 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 vex 3417 . . . . . . 7 𝑥 ∈ V
87elpr 4420 . . . . . 6 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
9 eleq1a 2901 . . . . . . 7 (𝐴𝑈 → (𝑥 = 𝐴𝑥𝑈))
10 eleq1a 2901 . . . . . . 7 (𝐵𝑈 → (𝑥 = 𝐵𝑥𝑈))
119, 10jaao 984 . . . . . 6 ((𝐴𝑈𝐵𝑈) → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥𝑈))
128, 11syl5bi 234 . . . . 5 ((𝐴𝑈𝐵𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥𝑈))
1312ralrimiv 3174 . . . 4 ((𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
14133adant1 1166 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
15 gruiun 9936 . . 3 ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
165, 6, 14, 15syl3anc 1496 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
174, 16eqeltrd 2906 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166  wral 3117  cun 3796  {cpr 4399   cuni 4658   ciun 4740  Univcgru 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-map 8124  df-gru 9928
This theorem is referenced by:  gruxp  9944
  Copyright terms: Public domain W3C validator