![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruun | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniiun 4794 | . . 3 ⊢ ∪ {𝐴, 𝐵} = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 | |
2 | uniprg 4673 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
3 | 2 | 3adant1 1166 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
4 | 1, 3 | syl5reqr 2877 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥) |
5 | simp1 1172 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
6 | grupr 9935 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | |
7 | vex 3418 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 7 | elpr 4421 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
9 | eleq1a 2902 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑈 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑈)) | |
10 | eleq1a 2902 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑈 → (𝑥 = 𝐵 → 𝑥 ∈ 𝑈)) | |
11 | 9, 10 | jaao 984 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝑈)) |
12 | 8, 11 | syl5bi 234 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑈)) |
13 | 12 | ralrimiv 3175 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
14 | 13 | 3adant1 1166 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
15 | gruiun 9937 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) | |
16 | 5, 6, 14, 15 | syl3anc 1496 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
17 | 4, 16 | eqeltrd 2907 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∨ wo 880 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ∀wral 3118 ∪ cun 3797 {cpr 4400 ∪ cuni 4659 ∪ ciun 4741 Univcgru 9928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-rab 3127 df-v 3417 df-sbc 3664 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-fv 6132 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-map 8125 df-gru 9929 |
This theorem is referenced by: gruxp 9945 |
Copyright terms: Public domain | W3C validator |