MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruun Structured version   Visualization version   GIF version

Theorem gruun 10825
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruun ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem gruun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4904 . . . 4 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
3 uniiun 5039 . . 3 {𝐴, 𝐵} = 𝑥 ∈ {𝐴, 𝐵}𝑥
42, 3eqtr3di 2786 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) = 𝑥 ∈ {𝐴, 𝐵}𝑥)
5 simp1 1136 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
6 grupr 10816 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 vex 3468 . . . . . . 7 𝑥 ∈ V
87elpr 4631 . . . . . 6 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
9 eleq1a 2830 . . . . . . 7 (𝐴𝑈 → (𝑥 = 𝐴𝑥𝑈))
10 eleq1a 2830 . . . . . . 7 (𝐵𝑈 → (𝑥 = 𝐵𝑥𝑈))
119, 10jaao 956 . . . . . 6 ((𝐴𝑈𝐵𝑈) → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥𝑈))
128, 11biimtrid 242 . . . . 5 ((𝐴𝑈𝐵𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥𝑈))
1312ralrimiv 3132 . . . 4 ((𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
14133adant1 1130 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
15 gruiun 10818 . . 3 ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
165, 6, 14, 15syl3anc 1373 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
174, 16eqeltrd 2835 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cun 3929  {cpr 4608   cuni 4888   ciun 4972  Univcgru 10809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-gru 10810
This theorem is referenced by:  gruxp  10826  grusucd  44221  grumnudlem  44276
  Copyright terms: Public domain W3C validator