![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruun | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4947 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
3 | uniiun 5081 | . . 3 ⊢ ∪ {𝐴, 𝐵} = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 | |
4 | 2, 3 | eqtr3di 2795 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥) |
5 | simp1 1136 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
6 | grupr 10866 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | |
7 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 7 | elpr 4672 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
9 | eleq1a 2839 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑈 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑈)) | |
10 | eleq1a 2839 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑈 → (𝑥 = 𝐵 → 𝑥 ∈ 𝑈)) | |
11 | 9, 10 | jaao 955 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝑈)) |
12 | 8, 11 | biimtrid 242 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑈)) |
13 | 12 | ralrimiv 3151 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
14 | 13 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
15 | gruiun 10868 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) | |
16 | 5, 6, 14, 15 | syl3anc 1371 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
17 | 4, 16 | eqeltrd 2844 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 {cpr 4650 ∪ cuni 4931 ∪ ciun 5015 Univcgru 10859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-gru 10860 |
This theorem is referenced by: gruxp 10876 grusucd 44199 grumnudlem 44254 |
Copyright terms: Public domain | W3C validator |