![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gruun | Structured version Visualization version GIF version |
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
Ref | Expression |
---|---|
gruun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniprg 4928 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
2 | 1 | 3adant1 1129 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
3 | uniiun 5063 | . . 3 ⊢ ∪ {𝐴, 𝐵} = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 | |
4 | 2, 3 | eqtr3di 2790 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥) |
5 | simp1 1135 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
6 | grupr 10835 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | |
7 | vex 3482 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | 7 | elpr 4655 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
9 | eleq1a 2834 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑈 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑈)) | |
10 | eleq1a 2834 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑈 → (𝑥 = 𝐵 → 𝑥 ∈ 𝑈)) | |
11 | 9, 10 | jaao 956 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝑈)) |
12 | 8, 11 | biimtrid 242 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑈)) |
13 | 12 | ralrimiv 3143 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
14 | 13 | 3adant1 1129 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
15 | gruiun 10837 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) | |
16 | 5, 6, 14, 15 | syl3anc 1370 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
17 | 4, 16 | eqeltrd 2839 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∪ cun 3961 {cpr 4633 ∪ cuni 4912 ∪ ciun 4996 Univcgru 10828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-gru 10829 |
This theorem is referenced by: gruxp 10845 grusucd 44226 grumnudlem 44281 |
Copyright terms: Public domain | W3C validator |