| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gruun | Structured version Visualization version GIF version | ||
| Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.) |
| Ref | Expression |
|---|---|
| gruun | ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniprg 4883 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) | |
| 2 | 1 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 3 | uniiun 5017 | . . 3 ⊢ ∪ {𝐴, 𝐵} = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 | |
| 4 | 2, 3 | eqtr3di 2779 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) = ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → 𝑈 ∈ Univ) | |
| 6 | grupr 10726 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → {𝐴, 𝐵} ∈ 𝑈) | |
| 7 | vex 3448 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 8 | 7 | elpr 4610 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵)) |
| 9 | eleq1a 2823 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑈 → (𝑥 = 𝐴 → 𝑥 ∈ 𝑈)) | |
| 10 | eleq1a 2823 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑈 → (𝑥 = 𝐵 → 𝑥 ∈ 𝑈)) | |
| 11 | 9, 10 | jaao 956 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ((𝑥 = 𝐴 ∨ 𝑥 = 𝐵) → 𝑥 ∈ 𝑈)) |
| 12 | 8, 11 | biimtrid 242 | . . . . 5 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥 ∈ 𝑈)) |
| 13 | 12 | ralrimiv 3124 | . . . 4 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
| 14 | 13 | 3adant1 1130 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
| 15 | gruiun 10728 | . . 3 ⊢ ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) | |
| 16 | 5, 6, 14, 15 | syl3anc 1373 | . 2 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → ∪ 𝑥 ∈ {𝐴, 𝐵}𝑥 ∈ 𝑈) |
| 17 | 4, 16 | eqeltrd 2828 | 1 ⊢ ((𝑈 ∈ Univ ∧ 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈) → (𝐴 ∪ 𝐵) ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∪ cun 3909 {cpr 4587 ∪ cuni 4867 ∪ ciun 4951 Univcgru 10719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-gru 10720 |
| This theorem is referenced by: gruxp 10736 grusucd 44192 grumnudlem 44247 |
| Copyright terms: Public domain | W3C validator |