MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruun Structured version   Visualization version   GIF version

Theorem gruun 10217
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruun ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem gruun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniiun 4945 . . 3 {𝐴, 𝐵} = 𝑥 ∈ {𝐴, 𝐵}𝑥
2 uniprg 4818 . . . 4 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
323adant1 1127 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
41, 3syl5reqr 2848 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) = 𝑥 ∈ {𝐴, 𝐵}𝑥)
5 simp1 1133 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
6 grupr 10208 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 vex 3444 . . . . . . 7 𝑥 ∈ V
87elpr 4548 . . . . . 6 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
9 eleq1a 2885 . . . . . . 7 (𝐴𝑈 → (𝑥 = 𝐴𝑥𝑈))
10 eleq1a 2885 . . . . . . 7 (𝐵𝑈 → (𝑥 = 𝐵𝑥𝑈))
119, 10jaao 952 . . . . . 6 ((𝐴𝑈𝐵𝑈) → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥𝑈))
128, 11syl5bi 245 . . . . 5 ((𝐴𝑈𝐵𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥𝑈))
1312ralrimiv 3148 . . . 4 ((𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
14133adant1 1127 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
15 gruiun 10210 . . 3 ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
165, 6, 14, 15syl3anc 1368 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
174, 16eqeltrd 2890 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cun 3879  {cpr 4527   cuni 4800   ciun 4881  Univcgru 10201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-gru 10202
This theorem is referenced by:  gruxp  10218  grusucd  40938  grumnudlem  40993
  Copyright terms: Public domain W3C validator