MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruun Structured version   Visualization version   GIF version

Theorem gruun 10875
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruun ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem gruun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4947 . . . 4 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1130 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
3 uniiun 5081 . . 3 {𝐴, 𝐵} = 𝑥 ∈ {𝐴, 𝐵}𝑥
42, 3eqtr3di 2795 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) = 𝑥 ∈ {𝐴, 𝐵}𝑥)
5 simp1 1136 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
6 grupr 10866 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 vex 3492 . . . . . . 7 𝑥 ∈ V
87elpr 4672 . . . . . 6 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
9 eleq1a 2839 . . . . . . 7 (𝐴𝑈 → (𝑥 = 𝐴𝑥𝑈))
10 eleq1a 2839 . . . . . . 7 (𝐵𝑈 → (𝑥 = 𝐵𝑥𝑈))
119, 10jaao 955 . . . . . 6 ((𝐴𝑈𝐵𝑈) → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥𝑈))
128, 11biimtrid 242 . . . . 5 ((𝐴𝑈𝐵𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥𝑈))
1312ralrimiv 3151 . . . 4 ((𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
14133adant1 1130 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
15 gruiun 10868 . . 3 ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
165, 6, 14, 15syl3anc 1371 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
174, 16eqeltrd 2844 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cun 3974  {cpr 4650   cuni 4931   ciun 5015  Univcgru 10859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-gru 10860
This theorem is referenced by:  gruxp  10876  grusucd  44199  grumnudlem  44254
  Copyright terms: Public domain W3C validator