MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruun Structured version   Visualization version   GIF version

Theorem gruun 10493
Description: A Grothendieck universe contains binary unions of its elements. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
gruun ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)

Proof of Theorem gruun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 uniprg 4853 . . . 4 ((𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
213adant1 1128 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} = (𝐴𝐵))
3 uniiun 4984 . . 3 {𝐴, 𝐵} = 𝑥 ∈ {𝐴, 𝐵}𝑥
42, 3eqtr3di 2794 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) = 𝑥 ∈ {𝐴, 𝐵}𝑥)
5 simp1 1134 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑈 ∈ Univ)
6 grupr 10484 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → {𝐴, 𝐵} ∈ 𝑈)
7 vex 3426 . . . . . . 7 𝑥 ∈ V
87elpr 4581 . . . . . 6 (𝑥 ∈ {𝐴, 𝐵} ↔ (𝑥 = 𝐴𝑥 = 𝐵))
9 eleq1a 2834 . . . . . . 7 (𝐴𝑈 → (𝑥 = 𝐴𝑥𝑈))
10 eleq1a 2834 . . . . . . 7 (𝐵𝑈 → (𝑥 = 𝐵𝑥𝑈))
119, 10jaao 951 . . . . . 6 ((𝐴𝑈𝐵𝑈) → ((𝑥 = 𝐴𝑥 = 𝐵) → 𝑥𝑈))
128, 11syl5bi 241 . . . . 5 ((𝐴𝑈𝐵𝑈) → (𝑥 ∈ {𝐴, 𝐵} → 𝑥𝑈))
1312ralrimiv 3106 . . . 4 ((𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
14133adant1 1128 . . 3 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
15 gruiun 10486 . . 3 ((𝑈 ∈ Univ ∧ {𝐴, 𝐵} ∈ 𝑈 ∧ ∀𝑥 ∈ {𝐴, 𝐵}𝑥𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
165, 6, 14, 15syl3anc 1369 . 2 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → 𝑥 ∈ {𝐴, 𝐵}𝑥𝑈)
174, 16eqeltrd 2839 1 ((𝑈 ∈ Univ ∧ 𝐴𝑈𝐵𝑈) → (𝐴𝐵) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cun 3881  {cpr 4560   cuni 4836   ciun 4921  Univcgru 10477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-gru 10478
This theorem is referenced by:  gruxp  10494  grusucd  41737  grumnudlem  41792
  Copyright terms: Public domain W3C validator