| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > kmlem5 | Structured version Visualization version GIF version | ||
| Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| kmlem5 | ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difss 4086 | . . . 4 ⊢ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 | |
| 2 | sslin 4193 | . . . 4 ⊢ ((𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤)) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) |
| 4 | kmlem4 10042 | . . 3 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | |
| 5 | 3, 4 | sseqtrid 3977 | . 2 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅) |
| 6 | ss0b 4351 | . 2 ⊢ (((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅ ↔ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | |
| 7 | 5, 6 | sylib 218 | 1 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ≠ wne 2928 ∖ cdif 3899 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-in 3909 df-ss 3919 df-nul 4284 df-sn 4577 df-uni 4860 |
| This theorem is referenced by: kmlem9 10047 |
| Copyright terms: Public domain | W3C validator |