![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kmlem5 | Structured version Visualization version GIF version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
kmlem5 | ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4146 | . . . 4 ⊢ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 | |
2 | sslin 4251 | . . . 4 ⊢ ((𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) |
4 | kmlem4 10192 | . . 3 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | |
5 | 3, 4 | sseqtrid 4048 | . 2 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅) |
6 | ss0b 4407 | . 2 ⊢ (((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅ ↔ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | |
7 | 5, 6 | sylib 218 | 1 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ≠ wne 2938 ∖ cdif 3960 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-uni 4913 |
This theorem is referenced by: kmlem9 10197 |
Copyright terms: Public domain | W3C validator |