Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > kmlem5 | Structured version Visualization version GIF version |
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
Ref | Expression |
---|---|
kmlem5 | ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 4066 | . . . 4 ⊢ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 | |
2 | sslin 4168 | . . . 4 ⊢ ((𝑤 ∖ ∪ (𝑥 ∖ {𝑤})) ⊆ 𝑤 → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) |
4 | kmlem4 9909 | . . 3 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | |
5 | 3, 4 | sseqtrid 3973 | . 2 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅) |
6 | ss0b 4331 | . 2 ⊢ (((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) ⊆ ∅ ↔ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | |
7 | 5, 6 | sylib 217 | 1 ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ≠ wne 2943 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ∪ cuni 4839 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-uni 4840 |
This theorem is referenced by: kmlem9 9914 |
Copyright terms: Public domain | W3C validator |