MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem5 Structured version   Visualization version   GIF version

Theorem kmlem5 9841
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
kmlem5 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) = ∅)
Distinct variable group:   𝑥,𝑤,𝑧

Proof of Theorem kmlem5
StepHypRef Expression
1 difss 4062 . . . 4 (𝑤 (𝑥 ∖ {𝑤})) ⊆ 𝑤
2 sslin 4165 . . . 4 ((𝑤 (𝑥 ∖ {𝑤})) ⊆ 𝑤 → ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤))
31, 2ax-mp 5 . . 3 ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) ⊆ ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤)
4 kmlem4 9840 . . 3 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
53, 4sseqtrid 3969 . 2 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) ⊆ ∅)
6 ss0b 4328 . 2 (((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) ⊆ ∅ ↔ ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) = ∅)
75, 6sylib 217 1 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ (𝑤 (𝑥 ∖ {𝑤}))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wne 2942  cdif 3880  cin 3882  wss 3883  c0 4253  {csn 4558   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-uni 4837
This theorem is referenced by:  kmlem9  9845
  Copyright terms: Public domain W3C validator