Step | Hyp | Ref
| Expression |
1 | | vex 3413 |
. . . 4
⊢ 𝑧 ∈ V |
2 | | eqeq1 2762 |
. . . . 5
⊢ (𝑢 = 𝑧 → (𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
3 | 2 | rexbidv 3221 |
. . . 4
⊢ (𝑢 = 𝑧 → (∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
4 | | kmlem9.1 |
. . . 4
⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} |
5 | 1, 3, 4 | elab2 3593 |
. . 3
⊢ (𝑧 ∈ 𝐴 ↔ ∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
6 | | vex 3413 |
. . . . 5
⊢ 𝑤 ∈ V |
7 | | eqeq1 2762 |
. . . . . 6
⊢ (𝑢 = 𝑤 → (𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ 𝑤 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
8 | 7 | rexbidv 3221 |
. . . . 5
⊢ (𝑢 = 𝑤 → (∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ ∃𝑡 ∈ 𝑥 𝑤 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})))) |
9 | 6, 8, 4 | elab2 3593 |
. . . 4
⊢ (𝑤 ∈ 𝐴 ↔ ∃𝑡 ∈ 𝑥 𝑤 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))) |
10 | | difeq1 4023 |
. . . . . . 7
⊢ (𝑡 = ℎ → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (ℎ ∖ ∪ (𝑥 ∖ {𝑡}))) |
11 | | sneq 4535 |
. . . . . . . . . 10
⊢ (𝑡 = ℎ → {𝑡} = {ℎ}) |
12 | 11 | difeq2d 4030 |
. . . . . . . . 9
⊢ (𝑡 = ℎ → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {ℎ})) |
13 | 12 | unieqd 4815 |
. . . . . . . 8
⊢ (𝑡 = ℎ → ∪ (𝑥 ∖ {𝑡}) = ∪ (𝑥 ∖ {ℎ})) |
14 | 13 | difeq2d 4030 |
. . . . . . 7
⊢ (𝑡 = ℎ → (ℎ ∖ ∪ (𝑥 ∖ {𝑡})) = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) |
15 | 10, 14 | eqtrd 2793 |
. . . . . 6
⊢ (𝑡 = ℎ → (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) |
16 | 15 | eqeq2d 2769 |
. . . . 5
⊢ (𝑡 = ℎ → (𝑤 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ})))) |
17 | 16 | cbvrexvw 3362 |
. . . 4
⊢
(∃𝑡 ∈
𝑥 𝑤 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ↔ ∃ℎ ∈ 𝑥 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) |
18 | 9, 17 | bitri 278 |
. . 3
⊢ (𝑤 ∈ 𝐴 ↔ ∃ℎ ∈ 𝑥 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) |
19 | | reeanv 3285 |
. . . 4
⊢
(∃𝑡 ∈
𝑥 ∃ℎ ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) ↔ (∃𝑡 ∈ 𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ ∃ℎ ∈ 𝑥 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ})))) |
20 | | eqeq12 2772 |
. . . . . . . . . 10
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 = 𝑤 ↔ (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) = (ℎ ∖ ∪ (𝑥 ∖ {ℎ})))) |
21 | 15, 20 | syl5ibr 249 |
. . . . . . . . 9
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑡 = ℎ → 𝑧 = 𝑤)) |
22 | 21 | necon3d 2972 |
. . . . . . . 8
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ≠ 𝑤 → 𝑡 ≠ ℎ)) |
23 | | kmlem5 9627 |
. . . . . . . . . 10
⊢ ((ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ) → ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) = ∅) |
24 | | ineq12 4114 |
. . . . . . . . . . 11
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ∩ 𝑤) = ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ (ℎ ∖ ∪ (𝑥 ∖ {ℎ})))) |
25 | 24 | eqeq1d 2760 |
. . . . . . . . . 10
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → ((𝑧 ∩ 𝑤) = ∅ ↔ ((𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∩ (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) = ∅)) |
26 | 23, 25 | syl5ibr 249 |
. . . . . . . . 9
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → ((ℎ ∈ 𝑥 ∧ 𝑡 ≠ ℎ) → (𝑧 ∩ 𝑤) = ∅)) |
27 | 26 | expd 419 |
. . . . . . . 8
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (ℎ ∈ 𝑥 → (𝑡 ≠ ℎ → (𝑧 ∩ 𝑤) = ∅))) |
28 | 22, 27 | syl5d 73 |
. . . . . . 7
⊢ ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (ℎ ∈ 𝑥 → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
29 | 28 | com12 32 |
. . . . . 6
⊢ (ℎ ∈ 𝑥 → ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
30 | 29 | adantl 485 |
. . . . 5
⊢ ((𝑡 ∈ 𝑥 ∧ ℎ ∈ 𝑥) → ((𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅))) |
31 | 30 | rexlimivv 3216 |
. . . 4
⊢
(∃𝑡 ∈
𝑥 ∃ℎ ∈ 𝑥 (𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) |
32 | 19, 31 | sylbir 238 |
. . 3
⊢
((∃𝑡 ∈
𝑥 𝑧 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡})) ∧ ∃ℎ ∈ 𝑥 𝑤 = (ℎ ∖ ∪ (𝑥 ∖ {ℎ}))) → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) |
33 | 5, 18, 32 | syl2anb 600 |
. 2
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) → (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) |
34 | 33 | rgen2 3132 |
1
⊢
∀𝑧 ∈
𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) |