MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem9 Structured version   Visualization version   GIF version

Theorem kmlem9 9914
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.)
Hypothesis
Ref Expression
kmlem9.1 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
Assertion
Ref Expression
kmlem9 𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
Distinct variable groups:   𝑥,𝑧,𝑤,𝑢,𝑡   𝑧,𝐴,𝑤
Allowed substitution hints:   𝐴(𝑥,𝑢,𝑡)

Proof of Theorem kmlem9
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . 4 𝑧 ∈ V
2 eqeq1 2742 . . . . 5 (𝑢 = 𝑧 → (𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ 𝑧 = (𝑡 (𝑥 ∖ {𝑡}))))
32rexbidv 3226 . . . 4 (𝑢 = 𝑧 → (∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ ∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡}))))
4 kmlem9.1 . . . 4 𝐴 = {𝑢 ∣ ∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡}))}
51, 3, 4elab2 3613 . . 3 (𝑧𝐴 ↔ ∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})))
6 vex 3436 . . . . 5 𝑤 ∈ V
7 eqeq1 2742 . . . . . 6 (𝑢 = 𝑤 → (𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ 𝑤 = (𝑡 (𝑥 ∖ {𝑡}))))
87rexbidv 3226 . . . . 5 (𝑢 = 𝑤 → (∃𝑡𝑥 𝑢 = (𝑡 (𝑥 ∖ {𝑡})) ↔ ∃𝑡𝑥 𝑤 = (𝑡 (𝑥 ∖ {𝑡}))))
96, 8, 4elab2 3613 . . . 4 (𝑤𝐴 ↔ ∃𝑡𝑥 𝑤 = (𝑡 (𝑥 ∖ {𝑡})))
10 difeq1 4050 . . . . . . 7 (𝑡 = → (𝑡 (𝑥 ∖ {𝑡})) = ( (𝑥 ∖ {𝑡})))
11 sneq 4571 . . . . . . . . . 10 (𝑡 = → {𝑡} = {})
1211difeq2d 4057 . . . . . . . . 9 (𝑡 = → (𝑥 ∖ {𝑡}) = (𝑥 ∖ {}))
1312unieqd 4853 . . . . . . . 8 (𝑡 = (𝑥 ∖ {𝑡}) = (𝑥 ∖ {}))
1413difeq2d 4057 . . . . . . 7 (𝑡 = → ( (𝑥 ∖ {𝑡})) = ( (𝑥 ∖ {})))
1510, 14eqtrd 2778 . . . . . 6 (𝑡 = → (𝑡 (𝑥 ∖ {𝑡})) = ( (𝑥 ∖ {})))
1615eqeq2d 2749 . . . . 5 (𝑡 = → (𝑤 = (𝑡 (𝑥 ∖ {𝑡})) ↔ 𝑤 = ( (𝑥 ∖ {}))))
1716cbvrexvw 3384 . . . 4 (∃𝑡𝑥 𝑤 = (𝑡 (𝑥 ∖ {𝑡})) ↔ ∃𝑥 𝑤 = ( (𝑥 ∖ {})))
189, 17bitri 274 . . 3 (𝑤𝐴 ↔ ∃𝑥 𝑤 = ( (𝑥 ∖ {})))
19 reeanv 3294 . . . 4 (∃𝑡𝑥𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) ↔ (∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ ∃𝑥 𝑤 = ( (𝑥 ∖ {}))))
20 eqeq12 2755 . . . . . . . . . 10 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧 = 𝑤 ↔ (𝑡 (𝑥 ∖ {𝑡})) = ( (𝑥 ∖ {}))))
2115, 20syl5ibr 245 . . . . . . . . 9 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑡 = 𝑧 = 𝑤))
2221necon3d 2964 . . . . . . . 8 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤𝑡))
23 kmlem5 9910 . . . . . . . . . 10 ((𝑥𝑡) → ((𝑡 (𝑥 ∖ {𝑡})) ∩ ( (𝑥 ∖ {}))) = ∅)
24 ineq12 4141 . . . . . . . . . . 11 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤) = ((𝑡 (𝑥 ∖ {𝑡})) ∩ ( (𝑥 ∖ {}))))
2524eqeq1d 2740 . . . . . . . . . 10 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → ((𝑧𝑤) = ∅ ↔ ((𝑡 (𝑥 ∖ {𝑡})) ∩ ( (𝑥 ∖ {}))) = ∅))
2623, 25syl5ibr 245 . . . . . . . . 9 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → ((𝑥𝑡) → (𝑧𝑤) = ∅))
2726expd 416 . . . . . . . 8 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑥 → (𝑡 → (𝑧𝑤) = ∅)))
2822, 27syl5d 73 . . . . . . 7 ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑥 → (𝑧𝑤 → (𝑧𝑤) = ∅)))
2928com12 32 . . . . . 6 (𝑥 → ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤 → (𝑧𝑤) = ∅)))
3029adantl 482 . . . . 5 ((𝑡𝑥𝑥) → ((𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤 → (𝑧𝑤) = ∅)))
3130rexlimivv 3221 . . . 4 (∃𝑡𝑥𝑥 (𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤 → (𝑧𝑤) = ∅))
3219, 31sylbir 234 . . 3 ((∃𝑡𝑥 𝑧 = (𝑡 (𝑥 ∖ {𝑡})) ∧ ∃𝑥 𝑤 = ( (𝑥 ∖ {}))) → (𝑧𝑤 → (𝑧𝑤) = ∅))
335, 18, 32syl2anb 598 . 2 ((𝑧𝐴𝑤𝐴) → (𝑧𝑤 → (𝑧𝑤) = ∅))
3433rgen2 3120 1 𝑧𝐴𝑤𝐴 (𝑧𝑤 → (𝑧𝑤) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  cdif 3884  cin 3886  c0 4256  {csn 4561   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-sn 4562  df-uni 4840
This theorem is referenced by:  kmlem10  9915
  Copyright terms: Public domain W3C validator