MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem4 Structured version   Visualization version   GIF version

Theorem kmlem4 10042
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
kmlem4 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
Distinct variable group:   𝑥,𝑤,𝑧

Proof of Theorem kmlem4
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2118 . . . . . . 7 (𝑣 = 𝑤 → (𝑣𝑥𝑤𝑥))
2 neeq2 2991 . . . . . . 7 (𝑣 = 𝑤 → (𝑧𝑣𝑧𝑤))
31, 2anbi12d 632 . . . . . 6 (𝑣 = 𝑤 → ((𝑣𝑥𝑧𝑣) ↔ (𝑤𝑥𝑧𝑤)))
4 elequ2 2126 . . . . . . 7 (𝑣 = 𝑤 → (𝑦𝑣𝑦𝑤))
54notbid 318 . . . . . 6 (𝑣 = 𝑤 → (¬ 𝑦𝑣 ↔ ¬ 𝑦𝑤))
63, 5imbi12d 344 . . . . 5 (𝑣 = 𝑤 → (((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) ↔ ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤)))
76spvv 1989 . . . 4 (∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) → ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤))
8 eldif 3912 . . . . 5 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ↔ (𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})))
9 simpr 484 . . . . . 6 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ¬ 𝑦 (𝑥 ∖ {𝑧}))
10 eluni 4862 . . . . . . . 8 (𝑦 (𝑥 ∖ {𝑧}) ↔ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
1110notbii 320 . . . . . . 7 𝑦 (𝑥 ∖ {𝑧}) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
12 alnex 1782 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
13 con2b 359 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ (𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣))
14 imnan 399 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
15 eldifsn 4738 . . . . . . . . . . 11 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑣𝑧))
16 necom 2981 . . . . . . . . . . . 12 (𝑣𝑧𝑧𝑣)
1716anbi2i 623 . . . . . . . . . . 11 ((𝑣𝑥𝑣𝑧) ↔ (𝑣𝑥𝑧𝑣))
1815, 17bitri 275 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑧𝑣))
1918imbi1i 349 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2013, 14, 193bitr3i 301 . . . . . . . 8 (¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2120albii 1820 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2211, 12, 213bitr2i 299 . . . . . 6 𝑦 (𝑥 ∖ {𝑧}) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
239, 22sylib 218 . . . . 5 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
248, 23sylbi 217 . . . 4 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
257, 24syl11 33 . . 3 ((𝑤𝑥𝑧𝑤) → (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ¬ 𝑦𝑤))
2625ralrimiv 3123 . 2 ((𝑤𝑥𝑧𝑤) → ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
27 disj 4400 . 2 (((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅ ↔ ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
2826, 27sylibr 234 1 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  cdif 3899  cin 3901  c0 4283  {csn 4576   cuni 4859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-v 3438  df-dif 3905  df-in 3909  df-nul 4284  df-sn 4577  df-uni 4860
This theorem is referenced by:  kmlem5  10043  kmlem11  10049
  Copyright terms: Public domain W3C validator