MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kmlem4 Structured version   Visualization version   GIF version

Theorem kmlem4 10194
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
kmlem4 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
Distinct variable group:   𝑥,𝑤,𝑧

Proof of Theorem kmlem4
Dummy variables 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elequ1 2115 . . . . . . 7 (𝑣 = 𝑤 → (𝑣𝑥𝑤𝑥))
2 neeq2 3004 . . . . . . 7 (𝑣 = 𝑤 → (𝑧𝑣𝑧𝑤))
31, 2anbi12d 632 . . . . . 6 (𝑣 = 𝑤 → ((𝑣𝑥𝑧𝑣) ↔ (𝑤𝑥𝑧𝑤)))
4 elequ2 2123 . . . . . . 7 (𝑣 = 𝑤 → (𝑦𝑣𝑦𝑤))
54notbid 318 . . . . . 6 (𝑣 = 𝑤 → (¬ 𝑦𝑣 ↔ ¬ 𝑦𝑤))
63, 5imbi12d 344 . . . . 5 (𝑣 = 𝑤 → (((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) ↔ ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤)))
76spvv 1996 . . . 4 (∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣) → ((𝑤𝑥𝑧𝑤) → ¬ 𝑦𝑤))
8 eldif 3961 . . . . 5 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ↔ (𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})))
9 simpr 484 . . . . . 6 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ¬ 𝑦 (𝑥 ∖ {𝑧}))
10 eluni 4910 . . . . . . . 8 (𝑦 (𝑥 ∖ {𝑧}) ↔ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
1110notbii 320 . . . . . . 7 𝑦 (𝑥 ∖ {𝑧}) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
12 alnex 1781 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ ∃𝑣(𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
13 con2b 359 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ (𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣))
14 imnan 399 . . . . . . . . 9 ((𝑦𝑣 → ¬ 𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})))
15 eldifsn 4786 . . . . . . . . . . 11 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑣𝑧))
16 necom 2994 . . . . . . . . . . . 12 (𝑣𝑧𝑧𝑣)
1716anbi2i 623 . . . . . . . . . . 11 ((𝑣𝑥𝑣𝑧) ↔ (𝑣𝑥𝑧𝑣))
1815, 17bitri 275 . . . . . . . . . 10 (𝑣 ∈ (𝑥 ∖ {𝑧}) ↔ (𝑣𝑥𝑧𝑣))
1918imbi1i 349 . . . . . . . . 9 ((𝑣 ∈ (𝑥 ∖ {𝑧}) → ¬ 𝑦𝑣) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2013, 14, 193bitr3i 301 . . . . . . . 8 (¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2120albii 1819 . . . . . . 7 (∀𝑣 ¬ (𝑦𝑣𝑣 ∈ (𝑥 ∖ {𝑧})) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
2211, 12, 213bitr2i 299 . . . . . 6 𝑦 (𝑥 ∖ {𝑧}) ↔ ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
239, 22sylib 218 . . . . 5 ((𝑦𝑧 ∧ ¬ 𝑦 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
248, 23sylbi 217 . . . 4 (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ∀𝑣((𝑣𝑥𝑧𝑣) → ¬ 𝑦𝑣))
257, 24syl11 33 . . 3 ((𝑤𝑥𝑧𝑤) → (𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) → ¬ 𝑦𝑤))
2625ralrimiv 3145 . 2 ((𝑤𝑥𝑧𝑤) → ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
27 disj 4450 . 2 (((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅ ↔ ∀𝑦 ∈ (𝑧 (𝑥 ∖ {𝑧})) ¬ 𝑦𝑤)
2826, 27sylibr 234 1 ((𝑤𝑥𝑧𝑤) → ((𝑧 (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  cdif 3948  cin 3950  c0 4333  {csn 4626   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-v 3482  df-dif 3954  df-in 3958  df-nul 4334  df-sn 4627  df-uni 4908
This theorem is referenced by:  kmlem5  10195  kmlem11  10201
  Copyright terms: Public domain W3C validator