Proof of Theorem kmlem6
| Step | Hyp | Ref
| Expression |
| 1 | | r19.26 3099 |
. 2
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ ∧ ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) ↔ (∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅))) |
| 2 | | n0 4333 |
. . . . 5
⊢ (𝑧 ≠ ∅ ↔
∃𝑣 𝑣 ∈ 𝑧) |
| 3 | 2 | biimpi 216 |
. . . 4
⊢ (𝑧 ≠ ∅ →
∃𝑣 𝑣 ∈ 𝑧) |
| 4 | | ne0i 4321 |
. . . . . . . 8
⊢ (𝑣 ∈ 𝐴 → 𝐴 ≠ ∅) |
| 5 | 4 | necon2bi 2963 |
. . . . . . 7
⊢ (𝐴 = ∅ → ¬ 𝑣 ∈ 𝐴) |
| 6 | 5 | imim2i 16 |
. . . . . 6
⊢ ((𝜑 → 𝐴 = ∅) → (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 7 | 6 | ralimi 3074 |
. . . . 5
⊢
(∀𝑤 ∈
𝑥 (𝜑 → 𝐴 = ∅) → ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 8 | 7 | alrimiv 1927 |
. . . 4
⊢
(∀𝑤 ∈
𝑥 (𝜑 → 𝐴 = ∅) → ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 9 | | 19.29r 1874 |
. . . . 5
⊢
((∃𝑣 𝑣 ∈ 𝑧 ∧ ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) → ∃𝑣(𝑣 ∈ 𝑧 ∧ ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴))) |
| 10 | | df-rex 3062 |
. . . . 5
⊢
(∃𝑣 ∈
𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 ∈ 𝑧 ∧ ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴))) |
| 11 | 9, 10 | sylibr 234 |
. . . 4
⊢
((∃𝑣 𝑣 ∈ 𝑧 ∧ ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) → ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 12 | 3, 8, 11 | syl2an 596 |
. . 3
⊢ ((𝑧 ≠ ∅ ∧
∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 13 | 12 | ralimi 3074 |
. 2
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ ∧ ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |
| 14 | 1, 13 | sylbir 235 |
1
⊢
((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |