Proof of Theorem kmlem6
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | r19.26 3111 | . 2
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ ∧ ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) ↔ (∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅))) | 
| 2 |  | n0 4353 | . . . . 5
⊢ (𝑧 ≠ ∅ ↔
∃𝑣 𝑣 ∈ 𝑧) | 
| 3 | 2 | biimpi 216 | . . . 4
⊢ (𝑧 ≠ ∅ →
∃𝑣 𝑣 ∈ 𝑧) | 
| 4 |  | ne0i 4341 | . . . . . . . 8
⊢ (𝑣 ∈ 𝐴 → 𝐴 ≠ ∅) | 
| 5 | 4 | necon2bi 2971 | . . . . . . 7
⊢ (𝐴 = ∅ → ¬ 𝑣 ∈ 𝐴) | 
| 6 | 5 | imim2i 16 | . . . . . 6
⊢ ((𝜑 → 𝐴 = ∅) → (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 7 | 6 | ralimi 3083 | . . . . 5
⊢
(∀𝑤 ∈
𝑥 (𝜑 → 𝐴 = ∅) → ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 8 | 7 | alrimiv 1927 | . . . 4
⊢
(∀𝑤 ∈
𝑥 (𝜑 → 𝐴 = ∅) → ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 9 |  | 19.29r 1874 | . . . . 5
⊢
((∃𝑣 𝑣 ∈ 𝑧 ∧ ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) → ∃𝑣(𝑣 ∈ 𝑧 ∧ ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴))) | 
| 10 |  | df-rex 3071 | . . . . 5
⊢
(∃𝑣 ∈
𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴) ↔ ∃𝑣(𝑣 ∈ 𝑧 ∧ ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴))) | 
| 11 | 9, 10 | sylibr 234 | . . . 4
⊢
((∃𝑣 𝑣 ∈ 𝑧 ∧ ∀𝑣∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) → ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 12 | 3, 8, 11 | syl2an 596 | . . 3
⊢ ((𝑧 ≠ ∅ ∧
∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 13 | 12 | ralimi 3083 | . 2
⊢
(∀𝑧 ∈
𝑥 (𝑧 ≠ ∅ ∧ ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | 
| 14 | 1, 13 | sylbir 235 | 1
⊢
((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) |