Home | Metamath
Proof Explorer Theorem List (p. 102 of 457) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28785) |
Hilbert Space Explorer
(28786-30308) |
Users' Mathboxes
(30309-45683) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | gchdju1 10101 | An infinite GCH-set is idempotent under cardinal successor. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) | ||
Theorem | gchinf 10102 | An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴) | ||
Theorem | pwfseqlem1 10103* | Lemma for pwfseq 10109. Derive a contradiction by diagonalization. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ (∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∖ ∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛))) | ||
Theorem | pwfseqlem2 10104* | Lemma for pwfseq 10109. (Contributed by Mario Carneiro, 18-Nov-2014.) (Revised by AV, 18-Sep-2021.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝑌 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑌𝐹𝑅) = (𝐻‘(card‘𝑌))) | ||
Theorem | pwfseqlem3 10105* | Lemma for pwfseq 10109. Using the construction 𝐷 from pwfseqlem1 10103, produce a function 𝐹 that maps any well-ordered infinite set to an element outside the set. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) | ||
Theorem | pwfseqlem4a 10106* | Lemma for pwfseqlem4 10107. (Contributed by Mario Carneiro, 7-Jun-2016.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) ⇒ ⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) | ||
Theorem | pwfseqlem4 10107* | Lemma for pwfseq 10109. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10105. Applying fpwwe2 10088 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊‘𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) & ⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) & ⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬ (𝐷‘𝑧) ∈ 𝑥}))) & ⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} & ⊢ 𝑍 = ∪ dom 𝑊 ⇒ ⊢ ¬ 𝜑 | ||
Theorem | pwfseqlem5 10108* |
Lemma for pwfseq 10109. Although in some ways pwfseqlem4 10107 is the "main"
part of the proof, one last aspect which makes up a remark in the
original text is by far the hardest part to formalize. The main proof
relies on the existence of an injection 𝐾 from the set of finite
sequences on an infinite set 𝑥 to 𝑥. Now this alone would
not
be difficult to prove; this is mostly the claim of fseqen 9472. However,
what is needed for the proof is a canonical injection on these
sets,
so we have to start from scratch pulling together explicit bijections
from the lemmas.
If one attempts such a program, it will mostly go through, but there is one key step which is inherently nonconstructive, namely the proof of infxpen 9459. The resolution is not obvious, but it turns out that reversing an infinite ordinal's Cantor normal form absorbs all the non-leading terms (cnfcom3c 9187), which can be used to construct a pairing function explicitly using properties of the ordinal exponential (infxpenc 9463). (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) & ⊢ (𝜓 ↔ ((𝑡 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑡 × 𝑡) ∧ 𝑟 We 𝑡) ∧ ω ≼ 𝑡)) & ⊢ (𝜑 → ∀𝑏 ∈ (har‘𝒫 𝐴)(ω ⊆ 𝑏 → (𝑁‘𝑏):(𝑏 × 𝑏)–1-1-onto→𝑏)) & ⊢ 𝑂 = OrdIso(𝑟, 𝑡) & ⊢ 𝑇 = (𝑢 ∈ dom 𝑂, 𝑣 ∈ dom 𝑂 ↦ 〈(𝑂‘𝑢), (𝑂‘𝑣)〉) & ⊢ 𝑃 = ((𝑂 ∘ (𝑁‘dom 𝑂)) ∘ ◡𝑇) & ⊢ 𝑆 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (𝑡 ↑m suc 𝑘) ↦ ((𝑓‘(𝑥 ↾ 𝑘))𝑃(𝑥‘𝑘)))), {〈∅, (𝑂‘∅)〉}) & ⊢ 𝑄 = (𝑦 ∈ ∪ 𝑛 ∈ ω (𝑡 ↑m 𝑛) ↦ 〈dom 𝑦, ((𝑆‘dom 𝑦)‘𝑦)〉) & ⊢ 𝐼 = (𝑥 ∈ ω, 𝑦 ∈ 𝑡 ↦ 〈(𝑂‘𝑥), 𝑦〉) & ⊢ 𝐾 = ((𝑃 ∘ 𝐼) ∘ 𝑄) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | pwfseq 10109* | The powerset of a Dedekind-infinite set does not inject into the set of finite sequences. The proof is due to Halbeisen and Shelah. Proposition 1.7 of [KanamoriPincus] p. 418. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) | ||
Theorem | pwxpndom2 10110 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 18-Jul-2022.) |
⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ (𝐴 × 𝐴))) | ||
Theorem | pwxpndom 10111 | The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 × 𝐴)) | ||
Theorem | pwdjundom 10112 | The powerset of a Dedekind-infinite set does not inject into its cardinal sum with itself. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ (ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ (𝐴 ⊔ 𝐴)) | ||
Theorem | gchdjuidm 10113 | An infinite GCH-set is idempotent under cardinal sum. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 𝐴) ≈ 𝐴) | ||
Theorem | gchxpidm 10114 | An infinite GCH-set is idempotent under cardinal product. Part of Lemma 2.2 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 × 𝐴) ≈ 𝐴) | ||
Theorem | gchpwdom 10115 | A relationship between dominance over the powerset and strict dominance when the sets involved are infinite GCH-sets. Proposition 3.1 of [KanamoriPincus] p. 421. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝐵 ∈ GCH) → (𝐴 ≺ 𝐵 ↔ 𝒫 𝐴 ≼ 𝐵)) | ||
Theorem | gchaleph 10116 | If (ℵ‘𝐴) is a GCH-set and its powerset is well-orderable, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ 𝒫 (ℵ‘𝐴) ∈ dom card) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
Theorem | gchaleph2 10117 | If (ℵ‘𝐴) and (ℵ‘suc 𝐴) are GCH-sets, then the successor aleph (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴). (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((𝐴 ∈ On ∧ (ℵ‘𝐴) ∈ GCH ∧ (ℵ‘suc 𝐴) ∈ GCH) → (ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴)) | ||
Theorem | hargch 10118 | If 𝐴 + ≈ 𝒫 𝐴, then 𝐴 is a GCH-set. The much simpler converse to gchhar 10124. (Contributed by Mario Carneiro, 2-Jun-2015.) |
⊢ ((har‘𝐴) ≈ 𝒫 𝐴 → 𝐴 ∈ GCH) | ||
Theorem | alephgch 10119 | If (ℵ‘suc 𝐴) is equinumerous to the powerset of (ℵ‘𝐴), then (ℵ‘𝐴) is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((ℵ‘suc 𝐴) ≈ 𝒫 (ℵ‘𝐴) → (ℵ‘𝐴) ∈ GCH) | ||
Theorem | gch2 10120 | It is sufficient to require that all alephs are GCH-sets to ensure the full generalized continuum hypothesis. (The proof uses the Axiom of Regularity.) (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (GCH = V ↔ ran ℵ ⊆ GCH) | ||
Theorem | gch3 10121 | An equivalent formulation of the generalized continuum hypothesis. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (GCH = V ↔ ∀𝑥 ∈ On (ℵ‘suc 𝑥) ≈ 𝒫 (ℵ‘𝑥)) | ||
Theorem | gch-kn 10122* | The equivalence of two versions of the Generalized Continuum Hypothesis. The right-hand side is the standard version in the literature. The left-hand side is a version devised by Kannan Nambiar, which he calls the Axiom of Combinatorial Sets. For the notation and motivation behind this axiom, see his paper, "Derivation of Continuum Hypothesis from Axiom of Combinatorial Sets", available at http://www.e-atheneum.net/science/derivation_ch.pdf. The equivalence of the two sides provides a negative answer to Open Problem 2 in http://www.e-atheneum.net/science/open_problem_print.pdf. The key idea in the proof below is to equate both sides of alephexp2 10026 to the successor aleph using enen2 8672. (Contributed by NM, 1-Oct-2004.) |
⊢ (𝐴 ∈ On → ((ℵ‘suc 𝐴) ≈ {𝑥 ∣ (𝑥 ⊆ (ℵ‘𝐴) ∧ 𝑥 ≈ (ℵ‘𝐴))} ↔ (ℵ‘suc 𝐴) ≈ (2o ↑m (ℵ‘𝐴)))) | ||
Theorem | gchaclem 10123 | Lemma for gchac 10126 (obsolete, used in Sierpiński's proof). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝜑 → ω ≼ 𝐴) & ⊢ (𝜑 → 𝒫 𝐶 ∈ GCH) & ⊢ (𝜑 → (𝐴 ≼ 𝐶 ∧ (𝐵 ≼ 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) ⇒ ⊢ (𝜑 → (𝐴 ≼ 𝒫 𝐶 ∧ (𝐵 ≼ 𝒫 𝒫 𝐶 → 𝒫 𝐴 ≼ 𝐵))) | ||
Theorem | gchhar 10124 | A "local" form of gchac 10126. If 𝐴 and 𝒫 𝐴 are GCH-sets, then the Hartogs number of 𝐴 is 𝒫 𝐴 (so 𝒫 𝐴 and a fortiori 𝐴 are well-orderable). The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 31-May-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → (har‘𝐴) ≈ 𝒫 𝐴) | ||
Theorem | gchacg 10125 | A "local" form of gchac 10126. If 𝐴 and 𝒫 𝐴 are GCH-sets, then 𝒫 𝐴 is well-orderable. The proof is due to Specker. Theorem 2.1 of [KanamoriPincus] p. 419. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((ω ≼ 𝐴 ∧ 𝐴 ∈ GCH ∧ 𝒫 𝐴 ∈ GCH) → 𝒫 𝐴 ∈ dom card) | ||
Theorem | gchac 10126 | The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (GCH = V → CHOICE) | ||
Here we introduce Tarski-Grothendieck (TG) set theory, named after mathematicians Alfred Tarski and Alexander Grothendieck. TG theory extends ZFC with the TG Axiom ax-groth 10268, which states that for every set 𝑥 there is an inaccessible cardinal 𝑦 such that 𝑦 is not in 𝑥. The addition of this axiom to ZFC set theory provides a framework for category theory, thus for all practical purposes giving us a complete foundation for "all of mathematics". We first introduce the concept of inaccessibles, including weakly and strongly inaccessible cardinals (df-wina 10129 and df-ina 10130 respectively ), Tarski classes (df-tsk 10194), and Grothendieck universes (df-gru 10236). We then introduce the Tarski's axiom ax-groth 10268 and prove various properties from that. | ||
Syntax | cwina 10127 | The class of weak inaccessibles. |
class Inaccw | ||
Syntax | cina 10128 | The class of strong inaccessibles. |
class Inacc | ||
Definition | df-wina 10129* | An ordinal is weakly inaccessible iff it is a regular limit cardinal. Note that our definition allows ω as a weakly inaccessible cardinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} | ||
Definition | df-ina 10130* | An ordinal is strongly inaccessible iff it is a regular strong limit cardinal, which is to say that it dominates the powersets of every smaller ordinal. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} | ||
Theorem | elwina 10131* | Conditions of weak inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ (𝐴 ∈ Inaccw ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | ||
Theorem | elina 10132* | Conditions of strong inaccessibility. (Contributed by Mario Carneiro, 22-Jun-2013.) |
⊢ (𝐴 ∈ Inacc ↔ (𝐴 ≠ ∅ ∧ (cf‘𝐴) = 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴)) | ||
Theorem | winaon 10133 | A weakly inaccessible cardinal is an ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ (𝐴 ∈ Inaccw → 𝐴 ∈ On) | ||
Theorem | inawinalem 10134* | Lemma for inawina 10135. (Contributed by Mario Carneiro, 8-Jun-2014.) |
⊢ (𝐴 ∈ On → (∀𝑥 ∈ 𝐴 𝒫 𝑥 ≺ 𝐴 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦)) | ||
Theorem | inawina 10135 | Every strongly inaccessible cardinal is weakly inaccessible. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ (𝐴 ∈ Inacc → 𝐴 ∈ Inaccw) | ||
Theorem | omina 10136 | ω is a strongly inaccessible cardinal. (Many definitions of "inaccessible" explicitly disallow ω as an inaccessible cardinal, but this choice allows us to reuse our results for inaccessibles for ω.) (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ ω ∈ Inacc | ||
Theorem | winacard 10137 | A weakly inaccessible cardinal is a cardinal. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | ||
Theorem | winainflem 10138* | A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ ((𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≺ 𝑦) → ω ⊆ 𝐴) | ||
Theorem | winainf 10139 | A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | ||
Theorem | winalim 10140 | A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ (𝐴 ∈ Inaccw → Lim 𝐴) | ||
Theorem | winalim2 10141* | A nontrivial weakly inaccessible cardinal is a limit aleph. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → ∃𝑥((ℵ‘𝑥) = 𝐴 ∧ Lim 𝑥)) | ||
Theorem | winafp 10142 | A nontrivial weakly inaccessible cardinal is a fixed point of the aleph function. (Contributed by Mario Carneiro, 29-May-2014.) |
⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) | ||
Theorem | winafpi 10143 | This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 4471 to turn this type of statement into the closed form statement winafp 10142, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 10142 using this theorem and dedth 4471, in ZFC. (You can prove this if you use ax-groth 10268, though.) (Contributed by Mario Carneiro, 28-May-2014.) |
⊢ 𝐴 ∈ Inaccw & ⊢ 𝐴 ≠ ω ⇒ ⊢ (ℵ‘𝐴) = 𝐴 | ||
Theorem | gchina 10144 | Assuming the GCH, weakly and strongly inaccessible cardinals coincide. Theorem 11.20 of [TakeutiZaring] p. 106. (Contributed by Mario Carneiro, 5-Jun-2015.) |
⊢ (GCH = V → Inaccw = Inacc) | ||
Syntax | cwun 10145 | Extend class definition to include the class of all weak universes. |
class WUni | ||
Syntax | cwunm 10146 | Extend class definition to include the map whose value is the smallest weak universe of which the given set is a subset. |
class wUniCl | ||
Definition | df-wun 10147* | The class of all weak universes. A weak universe is a nonempty transitive class closed under union, pairing, and powerset. The advantage of weak universes over Grothendieck universes is that one can prove that every set is contained in a weak universe in ZF (see uniwun 10185) whereas the analogue for Grothendieck universes requires ax-groth 10268 (see grothtsk 10280). (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} | ||
Definition | df-wunc 10148* | A function that maps a set 𝑥 to the smallest weak universe that contains the elements of the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢 ∈ WUni ∣ 𝑥 ⊆ 𝑢}) | ||
Theorem | iswun 10149* | Properties of a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∈ WUni ↔ (Tr 𝑈 ∧ 𝑈 ≠ ∅ ∧ ∀𝑥 ∈ 𝑈 (∪ 𝑥 ∈ 𝑈 ∧ 𝒫 𝑥 ∈ 𝑈 ∧ ∀𝑦 ∈ 𝑈 {𝑥, 𝑦} ∈ 𝑈)))) | ||
Theorem | wuntr 10150 | A weak universe is transitive. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝑈 ∈ WUni → Tr 𝑈) | ||
Theorem | wununi 10151 | A weak universe is closed under union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝑈) | ||
Theorem | wunpw 10152 | A weak universe is closed under powerset. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ 𝑈) | ||
Theorem | wunelss 10153 | The elements of a weak universe are also subsets of it. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑈) | ||
Theorem | wunpr 10154 | A weak universe is closed under pairing. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) | ||
Theorem | wunun 10155 | A weak universe is closed under binary union. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ 𝑈) | ||
Theorem | wuntp 10156 | A weak universe is closed under unordered triple. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ∈ 𝑈) | ||
Theorem | wunss 10157 | A weak universe is closed under subsets. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ 𝑈) | ||
Theorem | wunin 10158 | A weak universe is closed under binary intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝑈) | ||
Theorem | wundif 10159 | A weak universe is closed under class difference. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝑈) | ||
Theorem | wunint 10160 | A weak universe is closed under nonempty intersections. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ 𝑈) | ||
Theorem | wunsn 10161 | A weak universe is closed under singletons. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → {𝐴} ∈ 𝑈) | ||
Theorem | wunsuc 10162 | A weak universe is closed under successors. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → suc 𝐴 ∈ 𝑈) | ||
Theorem | wun0 10163 | A weak universe contains the empty set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑈) | ||
Theorem | wunr1om 10164 | A weak universe is infinite, because it contains all the finite levels of the cumulative hierarchy. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → (𝑅1 “ ω) ⊆ 𝑈) | ||
Theorem | wunom 10165 | A weak universe contains all the finite ordinals, and hence is infinite. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ (𝜑 → ω ⊆ 𝑈) | ||
Theorem | wunfi 10166 | A weak universe contains all finite sets with elements drawn from the universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ⊆ 𝑈) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝑈) | ||
Theorem | wunop 10167 | A weak universe is closed under ordered pairs. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑈) | ||
Theorem | wunot 10168 | A weak universe is closed under ordered triples. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵, 𝐶〉 ∈ 𝑈) | ||
Theorem | wunxp 10169 | A weak universe is closed under cartesian products. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ 𝑈) | ||
Theorem | wunpm 10170 | A weak universe is closed under partial mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↑pm 𝐵) ∈ 𝑈) | ||
Theorem | wunmap 10171 | A weak universe is closed under mappings. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ∈ 𝑈) | ||
Theorem | wunf 10172 | A weak universe is closed under functions with known domain and codomain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ 𝑈) | ||
Theorem | wundm 10173 | A weak universe is closed under the domain operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → dom 𝐴 ∈ 𝑈) | ||
Theorem | wunrn 10174 | A weak universe is closed under the range operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ran 𝐴 ∈ 𝑈) | ||
Theorem | wuncnv 10175 | A weak universe is closed under the converse operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ◡𝐴 ∈ 𝑈) | ||
Theorem | wunres 10176 | A weak universe is closed under restrictions. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ↾ 𝐵) ∈ 𝑈) | ||
Theorem | wunfv 10177 | A weak universe is closed under the function value operator. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴‘𝐵) ∈ 𝑈) | ||
Theorem | wunco 10178 | A weak universe is closed under composition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) & ⊢ (𝜑 → 𝐵 ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) ∈ 𝑈) | ||
Theorem | wuntpos 10179 | A weak universe is closed under transposition. (Contributed by Mario Carneiro, 12-Jan-2017.) |
⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → tpos 𝐴 ∈ 𝑈) | ||
Theorem | intwun 10180 | The intersection of a collection of weak universes is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ((𝐴 ⊆ WUni ∧ 𝐴 ≠ ∅) → ∩ 𝐴 ∈ WUni) | ||
Theorem | r1limwun 10181 | Each limit stage in the cumulative hierarchy is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → (𝑅1‘𝐴) ∈ WUni) | ||
Theorem | r1wunlim 10182 | The weak universes in the cumulative hierarchy are exactly the limit ordinals. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → ((𝑅1‘𝐴) ∈ WUni ↔ Lim 𝐴)) | ||
Theorem | wunex2 10183* | Construct a weak universe from a given set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) & ⊢ 𝑈 = ∪ ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) | ||
Theorem | wunex 10184* | Construct a weak universe from a given set. See also wunex2 10183. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑢 ∈ WUni 𝐴 ⊆ 𝑢) | ||
Theorem | uniwun 10185 | Every set is contained in a weak universe. This is the analogue of grothtsk 10280 for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk 10280. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ∪ WUni = V | ||
Theorem | wunex3 10186 | Construct a weak universe from a given set. This version of wunex 10184 has a simpler proof, but requires the axiom of regularity. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝑈 = (𝑅1‘((rank‘𝐴) +o ω)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈)) | ||
Theorem | wuncval 10187* | Value of the weak universe closure operator. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = ∩ {𝑢 ∈ WUni ∣ 𝐴 ⊆ 𝑢}) | ||
Theorem | wuncid 10188 | The weak universe closure of a set contains the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → 𝐴 ⊆ (wUniCl‘𝐴)) | ||
Theorem | wunccl 10189 | The weak universe closure of a set is a weak universe. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) ∈ WUni) | ||
Theorem | wuncss 10190 | The weak universe closure is a subset of any other weak universe containing the set. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ ((𝑈 ∈ WUni ∧ 𝐴 ⊆ 𝑈) → (wUniCl‘𝐴) ⊆ 𝑈) | ||
Theorem | wuncidm 10191 | The weak universe closure is idempotent. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ (𝐴 ∈ 𝑉 → (wUniCl‘(wUniCl‘𝐴)) = (wUniCl‘𝐴)) | ||
Theorem | wuncval2 10192* | Our earlier expression for a containing weak universe is in fact the weak universe closure. (Contributed by Mario Carneiro, 2-Jan-2017.) |
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ ((𝑧 ∪ ∪ 𝑧) ∪ ∪ 𝑥 ∈ 𝑧 ({𝒫 𝑥, ∪ 𝑥} ∪ ran (𝑦 ∈ 𝑧 ↦ {𝑥, 𝑦})))), (𝐴 ∪ 1o)) ↾ ω) & ⊢ 𝑈 = ∪ ran 𝐹 ⇒ ⊢ (𝐴 ∈ 𝑉 → (wUniCl‘𝐴) = 𝑈) | ||
Syntax | ctsk 10193 | Extend class definition to include the class of all Tarski classes. |
class Tarski | ||
Definition | df-tsk 10194* | The class of all Tarski classes. Tarski classes is a phrase coined by Grzegorz Bancerek in his article Tarski's Classes and Ranks, Journal of Formalized Mathematics, Vol 1, No 3, May-August 1990. A Tarski class is a set whose existence is ensured by Tarski's axiom A (see ax-groth 10268 and the equivalent axioms). Axiom A was first presented in Tarski's article Ueber unerreichbare Kardinalzahlen. Tarski introduced the axiom A to enable ZFC to manage inaccessible cardinals. Later Grothendieck introduced the concept of Grothendieck universes and showed they were equal to transitive Tarski classes. (Contributed by FL, 30-Dec-2010.) |
⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} | ||
Theorem | eltskg 10195* | Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) |
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ ∃𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) | ||
Theorem | eltsk2g 10196* | Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ (𝑇 ∈ 𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧 ∈ 𝑇 (𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇)))) | ||
Theorem | tskpwss 10197 | First axiom of a Tarski class. The subsets of an element of a Tarski class belong to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ⊆ 𝑇) | ||
Theorem | tskpw 10198 | Second axiom of a Tarski class. The powerset of an element of a Tarski class belongs to the class. (Contributed by FL, 30-Dec-2010.) (Proof shortened by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ∈ 𝑇) → 𝒫 𝐴 ∈ 𝑇) | ||
Theorem | tsken 10199 | Third axiom of a Tarski class. A subset of a Tarski class is either equipotent to the class or an element of the class. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
⊢ ((𝑇 ∈ Tarski ∧ 𝐴 ⊆ 𝑇) → (𝐴 ≈ 𝑇 ∨ 𝐴 ∈ 𝑇)) | ||
Theorem | 0tsk 10200 | The empty set is a (transitive) Tarski class. (Contributed by FL, 30-Dec-2010.) |
⊢ ∅ ∈ Tarski |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |