| Metamath
Proof Explorer Theorem List (p. 102 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | dfac12k 10101* | Equivalence of dfac12 10103 and dfac12a 10102, without using Regularity. (Contributed by Mario Carneiro, 21-May-2015.) |
| ⊢ (∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card ↔ ∀𝑦 ∈ On 𝒫 (ℵ‘𝑦) ∈ dom card) | ||
| Theorem | dfac12a 10102 | The axiom of choice holds iff every ordinal has a well-orderable powerset. (Contributed by Mario Carneiro, 29-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 𝑥 ∈ dom card) | ||
| Theorem | dfac12 10103 | The axiom of choice holds iff every aleph has a well-orderable powerset. (Contributed by Mario Carneiro, 21-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥 ∈ On 𝒫 (ℵ‘𝑥) ∈ dom card) | ||
| Theorem | kmlem1 10104* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, 1 => 2. (Contributed by NM, 5-Apr-2004.) |
| ⊢ (∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 𝜑) → ∃𝑦∀𝑧 ∈ 𝑥 𝜓) → ∀𝑥(∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 𝜑 → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → 𝜓))) | ||
| Theorem | kmlem2 10105* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| ⊢ (∃𝑦∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝜑 → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) | ||
| Theorem | kmlem3 10106* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. The right-hand side is part of the hypothesis of 4. (Contributed by NM, 25-Mar-2004.) |
| ⊢ ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ ↔ ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → ¬ 𝑣 ∈ (𝑧 ∩ 𝑤))) | ||
| Theorem | kmlem4 10107* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
| ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ 𝑤) = ∅) | ||
| Theorem | kmlem5 10108* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| ⊢ ((𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤) → ((𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ∩ (𝑤 ∖ ∪ (𝑥 ∖ {𝑤}))) = ∅) | ||
| Theorem | kmlem6 10109* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
| ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝜑 → 𝐴 = ∅)) → ∀𝑧 ∈ 𝑥 ∃𝑣 ∈ 𝑧 ∀𝑤 ∈ 𝑥 (𝜑 → ¬ 𝑣 ∈ 𝐴)) | ||
| Theorem | kmlem7 10110* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 4 => 1. (Contributed by NM, 26-Mar-2004.) |
| ⊢ ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤))) | ||
| Theorem | kmlem8 10111* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| ⊢ ((¬ ∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 → ∃𝑦∀𝑧 ∈ 𝑢 (𝑧 ≠ ∅ → ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦))) ↔ (∃𝑧 ∈ 𝑢 ∀𝑤 ∈ 𝑧 𝜓 ∨ ∃𝑦(¬ 𝑦 ∈ 𝑢 ∧ ∀𝑧 ∈ 𝑢 ∃!𝑤 𝑤 ∈ (𝑧 ∩ 𝑦)))) | ||
| Theorem | kmlem9 10112* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ ∀𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) | ||
| Theorem | kmlem10 10113* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀ℎ(∀𝑧 ∈ ℎ ∀𝑤 ∈ ℎ (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅) → ∃𝑦∀𝑧 ∈ ℎ 𝜑) → ∃𝑦∀𝑧 ∈ 𝐴 𝜑) | ||
| Theorem | kmlem11 10114* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ ∪ 𝐴) = (𝑧 ∖ ∪ (𝑥 ∖ {𝑧}))) | ||
| Theorem | kmlem12 10115* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 27-Mar-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀𝑧 ∈ 𝑥 (𝑧 ∖ ∪ (𝑥 ∖ {𝑧})) ≠ ∅ → (∀𝑧 ∈ 𝐴 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) → ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑦 ∩ ∪ 𝐴))))) | ||
| Theorem | kmlem13 10116* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 1 <=> 4. (Contributed by NM, 5-Apr-2004.) |
| ⊢ 𝐴 = {𝑢 ∣ ∃𝑡 ∈ 𝑥 𝑢 = (𝑡 ∖ ∪ (𝑥 ∖ {𝑡}))} ⇒ ⊢ (∀𝑥((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥(¬ ∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) → ∃𝑦∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)))) | ||
| Theorem | kmlem14 10117* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| ⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ (∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢(𝑦 ∈ 𝑥 ∧ 𝜑)) | ||
| Theorem | kmlem15 10118* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| ⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ ((¬ 𝑦 ∈ 𝑥 ∧ 𝜒) ↔ ∀𝑧∃𝑣∀𝑢(¬ 𝑦 ∈ 𝑥 ∧ 𝜓)) | ||
| Theorem | kmlem16 10119* | Lemma for 5-quantifier AC of Kurt Maes, Th. 4 5 <=> 4. (Contributed by NM, 4-Apr-2004.) |
| ⊢ (𝜑 ↔ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ 𝑦 ≠ 𝑣) ∧ 𝑧 ∈ 𝑣))) & ⊢ (𝜓 ↔ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))) & ⊢ (𝜒 ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ⇒ ⊢ ((∃𝑧 ∈ 𝑥 ∀𝑣 ∈ 𝑧 ∃𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 ∧ 𝑣 ∈ (𝑧 ∩ 𝑤)) ∨ ∃𝑦(¬ 𝑦 ∈ 𝑥 ∧ 𝜒)) ↔ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ 𝜑) ∨ (¬ 𝑦 ∈ 𝑥 ∧ 𝜓))) | ||
| Theorem | dfackm 10120* | Equivalence of the Axiom of Choice and Maes' AC ackm 10418. The proof consists of lemmas kmlem1 10104 through kmlem16 10119 and this final theorem. AC is not used for the proof. Note: bypassing the first step (i.e., replacing dfac5 10082 with biid 261) establishes the AC equivalence shown by Maes' writeup. The left-hand-side AC shown here was chosen because it is shorter to display. (Contributed by NM, 13-Apr-2004.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ (CHOICE ↔ ∀𝑥∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣)))))) | ||
For cardinal arithmetic, we follow [Mendelson] p. 258. Rather than defining operations restricted to cardinal numbers, we use disjoint union df-dju 9854 (⊔) for cardinal addition, Cartesian product df-xp 5644 (×) for cardinal multiplication, and set exponentiation df-map 8801 (↑m) for cardinal exponentiation. Equinumerosity and dominance serve the roles of equality and ordering. If we wanted to, we could easily convert our theorems to actual cardinal number operations via carden 10504, carddom 10507, and cardsdom 10508. The advantage of Mendelson's approach is that we can directly use many equinumerosity theorems that we already have available. | ||
| Theorem | undjudom 10121 | Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) (Revised by Jim Kingdon, 15-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | endjudisj 10122 | Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
| Theorem | djuen 10123 | Disjoint unions of equinumerous sets are equinumerous. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ⊔ 𝐷)) | ||
| Theorem | djuenun 10124 | Disjoint union is equinumerous to union for disjoint sets. (Contributed by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 19-Aug-2023.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ⊔ 𝐶) ≈ (𝐵 ∪ 𝐷)) | ||
| Theorem | dju1en 10125 | Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ 𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴) | ||
| Theorem | dju1dif 10126 | Adding and subtracting one gives back the original cardinality. Similar to pncan 11427 for cardinalities. (Contributed by Mario Carneiro, 18-May-2015.) (Revised by Jim Kingdon, 20-Aug-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {𝐵}) ≈ 𝐴) | ||
| Theorem | dju1p1e2 10127 | 1+1=2 for cardinal number addition, derived from pm54.43 9954 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 9848), but after applying definitions, our theorem is equivalent. Because we use a disjoint union for cardinal addition (as explained in the comment at the top of this section), we use ≈ instead of =. See dju1p1e2ALT 10128 for a shorter proof that doesn't use pm54.43 9954. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
| ⊢ (1o ⊔ 1o) ≈ 2o | ||
| Theorem | dju1p1e2ALT 10128 | Alternate proof of dju1p1e2 10127. (Contributed by Mario Carneiro, 29-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (1o ⊔ 1o) ≈ 2o | ||
| Theorem | dju0en 10129 | Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴 ⊔ ∅) ≈ 𝐴) | ||
| Theorem | xp2dju 10130 | Two times a cardinal number. Exercise 4.56(g) of [Mendelson] p. 258. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (2o × 𝐴) = (𝐴 ⊔ 𝐴) | ||
| Theorem | djucomen 10131 | Commutative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 24-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ⊔ 𝐵) ≈ (𝐵 ⊔ 𝐴)) | ||
| Theorem | djuassen 10132 | Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ⊔ 𝐵) ⊔ 𝐶) ≈ (𝐴 ⊔ (𝐵 ⊔ 𝐶))) | ||
| Theorem | xpdjuen 10133 | Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 × (𝐵 ⊔ 𝐶)) ≈ ((𝐴 × 𝐵) ⊔ (𝐴 × 𝐶))) | ||
| Theorem | mapdjuen 10134 | Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → (𝐴 ↑m (𝐵 ⊔ 𝐶)) ≈ ((𝐴 ↑m 𝐵) × (𝐴 ↑m 𝐶))) | ||
| Theorem | pwdjuen 10135 | Sum of exponents law for cardinal arithmetic. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 ⊔ 𝐵) ≈ (𝒫 𝐴 × 𝒫 𝐵)) | ||
| Theorem | djudom1 10136 | Ordering law for cardinal addition. Exercise 4.56(f) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) (Revised by Jim Kingdon, 1-Sep-2023.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐴 ⊔ 𝐶) ≼ (𝐵 ⊔ 𝐶)) | ||
| Theorem | djudom2 10137 | Ordering law for cardinal addition. Theorem 6L(a) of [Enderton] p. 149. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐶 ∈ 𝑉) → (𝐶 ⊔ 𝐴) ≼ (𝐶 ⊔ 𝐵)) | ||
| Theorem | djudoml 10138 | A set is dominated by its disjoint union with another. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐴 ≼ (𝐴 ⊔ 𝐵)) | ||
| Theorem | djuxpdom 10139 | Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 18-May-2015.) |
| ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ⊔ 𝐵) ≼ (𝐴 × 𝐵)) | ||
| Theorem | djufi 10140 | The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004.) |
| ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ⊔ 𝐵) ≺ ω) | ||
| Theorem | cdainflem 10141 | Any partition of omega into two pieces (which may be disjoint) contains an infinite subset. (Contributed by Mario Carneiro, 11-Feb-2013.) |
| ⊢ ((𝐴 ∪ 𝐵) ≈ ω → (𝐴 ≈ ω ∨ 𝐵 ≈ ω)) | ||
| Theorem | djuinf 10142 | A set is infinite iff the cardinal sum with itself is infinite. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (ω ≼ 𝐴 ↔ ω ≼ (𝐴 ⊔ 𝐴)) | ||
| Theorem | infdju1 10143 | An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (ω ≼ 𝐴 → (𝐴 ⊔ 1o) ≈ 𝐴) | ||
| Theorem | pwdju1 10144 | The sum of a powerset with itself is equipotent to the successor powerset. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 (𝐴 ⊔ 1o)) | ||
| Theorem | pwdjuidm 10145 | If the natural numbers inject into 𝐴, then 𝒫 𝐴 is idempotent under cardinal sum. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (ω ≼ 𝐴 → (𝒫 𝐴 ⊔ 𝒫 𝐴) ≈ 𝒫 𝐴) | ||
| Theorem | djulepw 10146 | If 𝐴 is idempotent under cardinal sum and 𝐵 is dominated by the power set of 𝐴, then so is the cardinal sum of 𝐴 and 𝐵. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (((𝐴 ⊔ 𝐴) ≈ 𝐴 ∧ 𝐵 ≼ 𝒫 𝐴) → (𝐴 ⊔ 𝐵) ≼ 𝒫 𝐴) | ||
| Theorem | onadju 10147 | The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) | ||
| Theorem | cardadju 10148 | The cardinal sum is equinumerous to an ordinal sum of the cardinals. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | ||
| Theorem | djunum 10149 | The disjoint union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ⊔ 𝐵) ∈ dom card) | ||
| Theorem | unnum 10150 | The union of two numerable sets is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card) → (𝐴 ∪ 𝐵) ∈ dom card) | ||
| Theorem | nnadju 10151 | The cardinal and ordinal sums of finite ordinals are equal. For a shorter proof using ax-rep 5234, see nnadjuALT 10152. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) Avoid ax-rep 5234. (Revised by BTernaryTau, 2-Jul-2024.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 ⊔ 𝐵)) = (𝐴 +o 𝐵)) | ||
| Theorem | nnadjuALT 10152 | Shorter proof of nnadju 10151 using ax-rep 5234. (Contributed by Paul Chapman, 11-Apr-2009.) (Revised by Mario Carneiro, 6-Feb-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (card‘(𝐴 ⊔ 𝐵)) = (𝐴 +o 𝐵)) | ||
| Theorem | ficardadju 10153 | The disjoint union of finite sets is equinumerous to the ordinal sum of the cardinalities of those sets. (Contributed by BTernaryTau, 3-Jul-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ⊔ 𝐵) ≈ ((card‘𝐴) +o (card‘𝐵))) | ||
| Theorem | ficardun 10154 | The cardinality of the union of disjoint, finite sets is the ordinal sum of their cardinalities. (Contributed by Paul Chapman, 5-Jun-2009.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) Avoid ax-rep 5234. (Revised by BTernaryTau, 3-Jul-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘(𝐴 ∪ 𝐵)) = ((card‘𝐴) +o (card‘𝐵))) | ||
| Theorem | ficardun2 10155 | The cardinality of the union of finite sets is at most the ordinal sum of their cardinalities. (Contributed by Mario Carneiro, 5-Feb-2013.) Avoid ax-rep 5234. (Revised by BTernaryTau, 3-Jul-2024.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (card‘(𝐴 ∪ 𝐵)) ⊆ ((card‘𝐴) +o (card‘𝐵))) | ||
| Theorem | pwsdompw 10156* | Lemma for domtriom 10396. This is the equinumerosity version of the algebraic identity Σ𝑘 ∈ 𝑛(2↑𝑘) = (2↑𝑛) − 1. (Contributed by Mario Carneiro, 7-Feb-2013.) |
| ⊢ ((𝑛 ∈ ω ∧ ∀𝑘 ∈ suc 𝑛(𝐵‘𝑘) ≈ 𝒫 𝑘) → ∪ 𝑘 ∈ 𝑛 (𝐵‘𝑘) ≺ (𝐵‘𝑛)) | ||
| Theorem | unctb 10157 | The union of two countable sets is countable. (Contributed by FL, 25-Aug-2006.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((𝐴 ≼ ω ∧ 𝐵 ≼ ω) → (𝐴 ∪ 𝐵) ≼ ω) | ||
| Theorem | infdjuabs 10158 | Absorption law for addition to an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ 𝐴) | ||
| Theorem | infunabs 10159 | An infinite set is equinumerous to its union with a smaller one. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≈ 𝐴) | ||
| Theorem | infdju 10160 | The sum of two cardinal numbers is their maximum, if one of them is infinite. Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
| Theorem | infdif 10161 | The cardinality of an infinite set does not change after subtracting a strictly smaller one. Example in [Enderton] p. 164. (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≺ 𝐴) → (𝐴 ∖ 𝐵) ≈ 𝐴) | ||
| Theorem | infdif2 10162 | Cardinality ordering for an infinite class difference. (Contributed by NM, 24-Mar-2007.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ∈ dom card ∧ ω ≼ 𝐴) → ((𝐴 ∖ 𝐵) ≼ 𝐵 ↔ 𝐴 ≼ 𝐵)) | ||
| Theorem | infxpdom 10163 | Dominance law for multiplication with an infinite cardinal. (Contributed by NM, 26-Mar-2006.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ ((𝐴 ∈ dom card ∧ ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 × 𝐵) ≼ 𝐴) | ||
| Theorem | infxpabs 10164 | Absorption law for multiplication with an infinite cardinal. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ≠ ∅ ∧ 𝐵 ≼ 𝐴)) → (𝐴 × 𝐵) ≈ 𝐴) | ||
| Theorem | infunsdom1 10165 | The union of two sets that are strictly dominated by the infinite set 𝑋 is also dominated by 𝑋. This version of infunsdom 10166 assumes additionally that 𝐴 is the smaller of the two. (Contributed by Mario Carneiro, 14-Dec-2013.) (Revised by Mario Carneiro, 3-May-2015.) |
| ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) | ||
| Theorem | infunsdom 10166 | The union of two sets that are strictly dominated by the infinite set 𝑋 is also strictly dominated by 𝑋. (Contributed by Mario Carneiro, 3-May-2015.) |
| ⊢ (((𝑋 ∈ dom card ∧ ω ≼ 𝑋) ∧ (𝐴 ≺ 𝑋 ∧ 𝐵 ≺ 𝑋)) → (𝐴 ∪ 𝐵) ≺ 𝑋) | ||
| Theorem | infxp 10167 | Absorption law for multiplication with an infinite cardinal. Equivalent to Proposition 10.41 of [TakeutiZaring] p. 95. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝐵 ∈ dom card ∧ 𝐵 ≠ ∅)) → (𝐴 × 𝐵) ≈ (𝐴 ∪ 𝐵)) | ||
| Theorem | pwdjudom 10168 | A property of dominance over a powerset, and a main lemma for gchac 10634. Similar to Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ (𝒫 (𝐴 ⊔ 𝐴) ≼ (𝐴 ⊔ 𝐵) → 𝒫 𝐴 ≼ 𝐵) | ||
| Theorem | infpss 10169* | Every infinite set has an equinumerous proper subset, proved without AC or Infinity. Exercise 7 of [TakeutiZaring] p. 91. See also infpssALT 10266. (Contributed by NM, 23-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴)) | ||
| Theorem | infmap2 10170* | An exponentiation law for infinite cardinals. Similar to Lemma 6.2 of [Jech] p. 43. Although this version of infmap 10529 avoids the axiom of choice, it requires the powerset of an infinite set to be well-orderable and so is usually not applicable. (Contributed by NM, 1-Oct-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ≼ 𝐴 ∧ (𝐴 ↑m 𝐵) ∈ dom card) → (𝐴 ↑m 𝐵) ≈ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐵)}) | ||
| Theorem | ackbij2lem1 10171 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → 𝒫 𝐴 ⊆ (𝒫 ω ∩ Fin)) | ||
| Theorem | ackbij1lem1 10172 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (¬ 𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = (𝐵 ∩ 𝐴)) | ||
| Theorem | ackbij1lem2 10173 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ∩ suc 𝐴) = ({𝐴} ∪ (𝐵 ∩ 𝐴))) | ||
| Theorem | ackbij1lem3 10174 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → 𝐴 ∈ (𝒫 ω ∩ Fin)) | ||
| Theorem | ackbij1lem4 10175 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| ⊢ (𝐴 ∈ ω → {𝐴} ∈ (𝒫 ω ∩ Fin)) | ||
| Theorem | ackbij1lem5 10176 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 19-Nov-2014.) (Proof shortened by AV, 18-Jul-2022.) |
| ⊢ (𝐴 ∈ ω → (card‘𝒫 suc 𝐴) = ((card‘𝒫 𝐴) +o (card‘𝒫 𝐴))) | ||
| Theorem | ackbij1lem6 10177 | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)) | ||
| Theorem | ackbij1lem7 10178* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 21-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) | ||
| Theorem | ackbij1lem8 10179* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴)) | ||
| Theorem | ackbij1lem9 10180* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 19-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹‘(𝐴 ∪ 𝐵)) = ((𝐹‘𝐴) +o (𝐹‘𝐵))) | ||
| Theorem | ackbij1lem10 10181* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ 𝐹:(𝒫 ω ∩ Fin)⟶ω | ||
| Theorem | ackbij1lem11 10182* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ (𝒫 ω ∩ Fin)) | ||
| Theorem | ackbij1lem12 10183* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ ((𝐵 ∈ (𝒫 ω ∩ Fin) ∧ 𝐴 ⊆ 𝐵) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
| Theorem | ackbij1lem13 10184* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐹‘∅) = ∅ | ||
| Theorem | ackbij1lem14 10185* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹‘𝐴)) | ||
| Theorem | ackbij1lem15 10186* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐 ∈ 𝐴 ∧ ¬ 𝑐 ∈ 𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐))) | ||
| Theorem | ackbij1lem16 10187* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) → ((𝐹‘𝐴) = (𝐹‘𝐵) → 𝐴 = 𝐵)) | ||
| Theorem | ackbij1lem17 10188* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1→ω | ||
| Theorem | ackbij1lem18 10189* | Lemma for ackbij1 10190. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐴 ∈ (𝒫 ω ∩ Fin) → ∃𝑏 ∈ (𝒫 ω ∩ Fin)(𝐹‘𝑏) = suc (𝐹‘𝐴)) | ||
| Theorem | ackbij1 10190* | The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ 𝐹:(𝒫 ω ∩ Fin)–1-1-onto→ω | ||
| Theorem | ackbij1b 10191* | The Ackermann bijection, part 1b: the bijection from ackbij1 10190 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) ⇒ ⊢ (𝐴 ∈ ω → (𝐹 “ 𝒫 𝐴) = (card‘𝒫 𝐴)) | ||
| Theorem | ackbij2lem2 10192* | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) & ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) ⇒ ⊢ (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴):(𝑅1‘𝐴)–1-1-onto→(card‘(𝑅1‘𝐴))) | ||
| Theorem | ackbij2lem3 10193* | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) & ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) ⇒ ⊢ (𝐴 ∈ ω → (rec(𝐺, ∅)‘𝐴) ⊆ (rec(𝐺, ∅)‘suc 𝐴)) | ||
| Theorem | ackbij2lem4 10194* | Lemma for ackbij2 10195. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) & ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) ⇒ ⊢ (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵 ⊆ 𝐴) → (rec(𝐺, ∅)‘𝐵) ⊆ (rec(𝐺, ∅)‘𝐴)) | ||
| Theorem | ackbij2 10195* | The Ackermann bijection, part 2: hereditarily finite sets can be represented by recursive binary notation. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) & ⊢ 𝐺 = (𝑥 ∈ V ↦ (𝑦 ∈ 𝒫 dom 𝑥 ↦ (𝐹‘(𝑥 “ 𝑦)))) & ⊢ 𝐻 = ∪ (rec(𝐺, ∅) “ ω) ⇒ ⊢ 𝐻:∪ (𝑅1 “ ω)–1-1-onto→ω | ||
| Theorem | r1om 10196 | The set of hereditarily finite sets is countable. See ackbij2 10195 for an explicit bijection that works without Infinity. See also r1omALT 10729. (Contributed by Stefan O'Rear, 18-Nov-2014.) |
| ⊢ (𝑅1‘ω) ≈ ω | ||
| Theorem | fictb 10197 | A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω)) | ||
| Theorem | cflem 10198* | A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set 𝐴. (Contributed by NM, 24-Apr-2004.) Avoid ax-11 2158. (Revised by BTernaryTau, 25-Jul-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | ||
| Theorem | cflemOLD 10199* | Obsolete version of cflem 10198 as of 25-Jul-2025. (Contributed by NM, 24-Apr-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))) | ||
| Theorem | cfval 10200* | Value of the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). The cofinality of an ordinal number 𝐴 is the cardinality (size) of the smallest unbounded subset 𝑦 of the ordinal number. Unbounded means that for every member of 𝐴, there is a member of 𝑦 that is at least as large. Cofinality is a measure of how "reachable from below" an ordinal is. (Contributed by NM, 1-Apr-2004.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| ⊢ (𝐴 ∈ On → (cf‘𝐴) = ∩ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤))}) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |