![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version |
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4263 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | incom 4230 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4230 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: ss2in 4266 inxpssres 5717 ssres2 6034 predrelss 6369 sbthlem7 9155 kmlem5 10224 canthnum 10718 ioodisj 13542 hashun3 14433 dprdres 20072 dprd2da 20086 dmdprdsplit2lem 20089 srhmsubc 20702 rhmsubclem3 20709 fldc 20807 fldhmsubc 20808 cnprest 23318 isnrm3 23388 regsep2 23405 llycmpkgen2 23579 kqdisj 23761 regr1lem 23768 fclsbas 24050 fclscf 24054 flimfnfcls 24057 isfcf 24063 metdstri 24892 nulmbl2 25590 uniioombllem4 25640 volsup2 25659 volcn 25660 itg1climres 25769 limcresi 25940 limciun 25949 rlimcnp2 27027 rplogsum 27589 chssoc 31528 cmbr4i 31633 5oai 31693 3oalem6 31699 mdslmd4i 32365 atcvat4i 32429 imadifxp 32623 swrdrndisj 32924 1arithufdlem4 33540 crefss 33795 pnfneige0 33897 cldbnd 36292 neibastop1 36325 neibastop2 36327 onint1 36415 oninhaus 36416 bj-idres 37126 cntotbnd 37756 polcon3N 39874 osumcllem4N 39916 lcfrlem2 41500 mapfzcons1 42673 coeq0i 42709 eldioph4b 42767 icccncfext 45808 rhmsubcALTVlem4 48007 srhmsubcALTV 48048 fldcALTV 48055 fldhmsubcALTV 48056 ssdisjdr 48540 sepnsepolem2 48602 |
Copyright terms: Public domain | W3C validator |