| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4217 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4184 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4184 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 4012 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-in 3933 df-ss 3943 |
| This theorem is referenced by: ss2in 4220 inxpssres 5671 ssres2 5991 predrelss 6326 sbthlem7 9103 kmlem5 10169 canthnum 10663 ioodisj 13499 hashun3 14402 dprdres 20011 dprd2da 20025 dmdprdsplit2lem 20028 srhmsubc 20640 rhmsubclem3 20647 fldc 20744 fldhmsubc 20745 cnprest 23227 isnrm3 23297 regsep2 23314 llycmpkgen2 23488 kqdisj 23670 regr1lem 23677 fclsbas 23959 fclscf 23963 flimfnfcls 23966 isfcf 23972 metdstri 24791 nulmbl2 25489 uniioombllem4 25539 volsup2 25558 volcn 25559 itg1climres 25667 limcresi 25838 limciun 25847 rlimcnp2 26928 rplogsum 27490 chssoc 31477 cmbr4i 31582 5oai 31642 3oalem6 31648 mdslmd4i 32314 atcvat4i 32378 imadifxp 32582 swrdrndisj 32933 1arithufdlem4 33562 crefss 33880 pnfneige0 33982 cldbnd 36344 neibastop1 36377 neibastop2 36379 onint1 36467 oninhaus 36468 bj-idres 37178 cntotbnd 37820 polcon3N 39936 osumcllem4N 39978 lcfrlem2 41562 mapfzcons1 42740 coeq0i 42776 eldioph4b 42834 icccncfext 45916 rhmsubcALTVlem4 48259 srhmsubcALTV 48300 fldcALTV 48307 fldhmsubcALTV 48308 ssdisjdr 48787 sepnsepolem2 48897 |
| Copyright terms: Public domain | W3C validator |