![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version |
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4250 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | incom 4217 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4217 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3sstr4g 4041 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3962 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-in 3970 df-ss 3980 |
This theorem is referenced by: ss2in 4253 inxpssres 5706 ssres2 6025 predrelss 6360 sbthlem7 9128 kmlem5 10193 canthnum 10687 ioodisj 13519 hashun3 14420 dprdres 20063 dprd2da 20077 dmdprdsplit2lem 20080 srhmsubc 20697 rhmsubclem3 20704 fldc 20802 fldhmsubc 20803 cnprest 23313 isnrm3 23383 regsep2 23400 llycmpkgen2 23574 kqdisj 23756 regr1lem 23763 fclsbas 24045 fclscf 24049 flimfnfcls 24052 isfcf 24058 metdstri 24887 nulmbl2 25585 uniioombllem4 25635 volsup2 25654 volcn 25655 itg1climres 25764 limcresi 25935 limciun 25944 rlimcnp2 27024 rplogsum 27586 chssoc 31525 cmbr4i 31630 5oai 31690 3oalem6 31696 mdslmd4i 32362 atcvat4i 32426 imadifxp 32621 swrdrndisj 32927 1arithufdlem4 33555 crefss 33810 pnfneige0 33912 cldbnd 36309 neibastop1 36342 neibastop2 36344 onint1 36432 oninhaus 36433 bj-idres 37143 cntotbnd 37783 polcon3N 39900 osumcllem4N 39942 lcfrlem2 41526 mapfzcons1 42705 coeq0i 42741 eldioph4b 42799 icccncfext 45843 rhmsubcALTVlem4 48128 srhmsubcALTV 48169 fldcALTV 48176 fldhmsubcALTV 48177 ssdisjdr 48657 sepnsepolem2 48719 |
Copyright terms: Public domain | W3C validator |