| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4191 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4158 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4158 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 3984 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 |
| This theorem is referenced by: ss2in 4194 inxpssres 5636 ssres2 5957 predrelss 6289 sbthlem7 9013 kmlem5 10053 canthnum 10547 ioodisj 13384 hashun3 14293 dprdres 19944 dprd2da 19958 dmdprdsplit2lem 19961 srhmsubc 20597 rhmsubclem3 20604 fldc 20701 fldhmsubc 20702 cnprest 23205 isnrm3 23275 regsep2 23292 llycmpkgen2 23466 kqdisj 23648 regr1lem 23655 fclsbas 23937 fclscf 23941 flimfnfcls 23944 isfcf 23950 metdstri 24768 nulmbl2 25465 uniioombllem4 25515 volsup2 25534 volcn 25535 itg1climres 25643 limcresi 25814 limciun 25823 rlimcnp2 26904 rplogsum 27466 chssoc 31478 cmbr4i 31583 5oai 31643 3oalem6 31649 mdslmd4i 32315 atcvat4i 32379 imadifxp 32583 swrdrndisj 32945 1arithufdlem4 33519 crefss 33883 pnfneige0 33985 cldbnd 36391 neibastop1 36424 neibastop2 36426 onint1 36514 oninhaus 36515 bj-idres 37225 cntotbnd 37856 polcon3N 40036 osumcllem4N 40078 lcfrlem2 41662 mapfzcons1 42834 coeq0i 42870 eldioph4b 42928 icccncfext 46009 rhmsubcALTVlem4 48408 srhmsubcALTV 48449 fldcALTV 48456 fldhmsubcALTV 48457 ssdisjdr 48933 sepnsepolem2 49047 |
| Copyright terms: Public domain | W3C validator |