| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4192 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4159 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4159 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 3988 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3909 df-ss 3919 |
| This theorem is referenced by: ss2in 4195 inxpssres 5633 ssres2 5953 predrelss 6284 sbthlem7 9006 kmlem5 10043 canthnum 10537 ioodisj 13379 hashun3 14288 dprdres 19940 dprd2da 19954 dmdprdsplit2lem 19957 srhmsubc 20593 rhmsubclem3 20600 fldc 20697 fldhmsubc 20698 cnprest 23202 isnrm3 23272 regsep2 23289 llycmpkgen2 23463 kqdisj 23645 regr1lem 23652 fclsbas 23934 fclscf 23938 flimfnfcls 23941 isfcf 23947 metdstri 24765 nulmbl2 25462 uniioombllem4 25512 volsup2 25531 volcn 25532 itg1climres 25640 limcresi 25811 limciun 25820 rlimcnp2 26901 rplogsum 27463 chssoc 31471 cmbr4i 31576 5oai 31636 3oalem6 31642 mdslmd4i 32308 atcvat4i 32372 imadifxp 32576 swrdrndisj 32933 1arithufdlem4 33507 crefss 33857 pnfneige0 33959 cldbnd 36359 neibastop1 36392 neibastop2 36394 onint1 36482 oninhaus 36483 bj-idres 37193 cntotbnd 37835 polcon3N 39955 osumcllem4N 39997 lcfrlem2 41581 mapfzcons1 42749 coeq0i 42785 eldioph4b 42843 icccncfext 45924 rhmsubcALTVlem4 48314 srhmsubcALTV 48355 fldcALTV 48362 fldhmsubcALTV 48363 ssdisjdr 48839 sepnsepolem2 48953 |
| Copyright terms: Public domain | W3C validator |