| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4195 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4162 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4162 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 3991 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3904 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-in 3912 df-ss 3922 |
| This theorem is referenced by: ss2in 4198 inxpssres 5640 ssres2 5959 predrelss 6289 sbthlem7 9017 kmlem5 10068 canthnum 10562 ioodisj 13403 hashun3 14309 dprdres 19927 dprd2da 19941 dmdprdsplit2lem 19944 srhmsubc 20583 rhmsubclem3 20590 fldc 20687 fldhmsubc 20688 cnprest 23192 isnrm3 23262 regsep2 23279 llycmpkgen2 23453 kqdisj 23635 regr1lem 23642 fclsbas 23924 fclscf 23928 flimfnfcls 23931 isfcf 23937 metdstri 24756 nulmbl2 25453 uniioombllem4 25503 volsup2 25522 volcn 25523 itg1climres 25631 limcresi 25802 limciun 25811 rlimcnp2 26892 rplogsum 27454 chssoc 31458 cmbr4i 31563 5oai 31623 3oalem6 31629 mdslmd4i 32295 atcvat4i 32359 imadifxp 32563 swrdrndisj 32912 1arithufdlem4 33494 crefss 33815 pnfneige0 33917 cldbnd 36299 neibastop1 36332 neibastop2 36334 onint1 36422 oninhaus 36423 bj-idres 37133 cntotbnd 37775 polcon3N 39896 osumcllem4N 39938 lcfrlem2 41522 mapfzcons1 42690 coeq0i 42726 eldioph4b 42784 icccncfext 45869 rhmsubcALTVlem4 48269 srhmsubcALTV 48310 fldcALTV 48317 fldhmsubcALTV 48318 ssdisjdr 48794 sepnsepolem2 48908 |
| Copyright terms: Public domain | W3C validator |