| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4242 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4209 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4209 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 4037 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3950 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-in 3958 df-ss 3968 |
| This theorem is referenced by: ss2in 4245 inxpssres 5702 ssres2 6022 predrelss 6358 sbthlem7 9129 kmlem5 10195 canthnum 10689 ioodisj 13522 hashun3 14423 dprdres 20048 dprd2da 20062 dmdprdsplit2lem 20065 srhmsubc 20680 rhmsubclem3 20687 fldc 20785 fldhmsubc 20786 cnprest 23297 isnrm3 23367 regsep2 23384 llycmpkgen2 23558 kqdisj 23740 regr1lem 23747 fclsbas 24029 fclscf 24033 flimfnfcls 24036 isfcf 24042 metdstri 24873 nulmbl2 25571 uniioombllem4 25621 volsup2 25640 volcn 25641 itg1climres 25749 limcresi 25920 limciun 25929 rlimcnp2 27009 rplogsum 27571 chssoc 31515 cmbr4i 31620 5oai 31680 3oalem6 31686 mdslmd4i 32352 atcvat4i 32416 imadifxp 32614 swrdrndisj 32942 1arithufdlem4 33575 crefss 33848 pnfneige0 33950 cldbnd 36327 neibastop1 36360 neibastop2 36362 onint1 36450 oninhaus 36451 bj-idres 37161 cntotbnd 37803 polcon3N 39919 osumcllem4N 39961 lcfrlem2 41545 mapfzcons1 42728 coeq0i 42764 eldioph4b 42822 icccncfext 45902 rhmsubcALTVlem4 48200 srhmsubcALTV 48241 fldcALTV 48248 fldhmsubcALTV 48249 ssdisjdr 48728 sepnsepolem2 48820 |
| Copyright terms: Public domain | W3C validator |