| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4205 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4172 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4172 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 4000 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-in 3921 df-ss 3931 |
| This theorem is referenced by: ss2in 4208 inxpssres 5655 ssres2 5975 predrelss 6310 sbthlem7 9057 kmlem5 10108 canthnum 10602 ioodisj 13443 hashun3 14349 dprdres 19960 dprd2da 19974 dmdprdsplit2lem 19977 srhmsubc 20589 rhmsubclem3 20596 fldc 20693 fldhmsubc 20694 cnprest 23176 isnrm3 23246 regsep2 23263 llycmpkgen2 23437 kqdisj 23619 regr1lem 23626 fclsbas 23908 fclscf 23912 flimfnfcls 23915 isfcf 23921 metdstri 24740 nulmbl2 25437 uniioombllem4 25487 volsup2 25506 volcn 25507 itg1climres 25615 limcresi 25786 limciun 25795 rlimcnp2 26876 rplogsum 27438 chssoc 31425 cmbr4i 31530 5oai 31590 3oalem6 31596 mdslmd4i 32262 atcvat4i 32326 imadifxp 32530 swrdrndisj 32879 1arithufdlem4 33518 crefss 33839 pnfneige0 33941 cldbnd 36314 neibastop1 36347 neibastop2 36349 onint1 36437 oninhaus 36438 bj-idres 37148 cntotbnd 37790 polcon3N 39911 osumcllem4N 39953 lcfrlem2 41537 mapfzcons1 42705 coeq0i 42741 eldioph4b 42799 icccncfext 45885 rhmsubcALTVlem4 48272 srhmsubcALTV 48313 fldcALTV 48320 fldhmsubcALTV 48321 ssdisjdr 48797 sepnsepolem2 48911 |
| Copyright terms: Public domain | W3C validator |