Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version |
Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
Ref | Expression |
---|---|
sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrin 4164 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
2 | incom 4131 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
3 | incom 4131 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
4 | 1, 2, 3 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ss2in 4167 inxpssres 5597 ssres2 5908 sbthlem7 8829 kmlem5 9841 canthnum 10336 ioodisj 13143 hashun3 14027 dprdres 19546 dprd2da 19560 dmdprdsplit2lem 19563 cnprest 22348 isnrm3 22418 regsep2 22435 llycmpkgen2 22609 kqdisj 22791 regr1lem 22798 fclsbas 23080 fclscf 23084 flimfnfcls 23087 isfcf 23093 metdstri 23920 nulmbl2 24605 uniioombllem4 24655 volsup2 24674 volcn 24675 itg1climres 24784 limcresi 24954 limciun 24963 rlimcnp2 26021 rplogsum 26580 chssoc 29759 cmbr4i 29864 5oai 29924 3oalem6 29930 mdslmd4i 30596 atcvat4i 30660 imadifxp 30841 swrdrndisj 31131 crefss 31701 pnfneige0 31803 cldbnd 34442 neibastop1 34475 neibastop2 34477 onint1 34565 oninhaus 34566 bj-idres 35258 cntotbnd 35881 polcon3N 37858 osumcllem4N 37900 lcfrlem2 39484 mapfzcons1 40455 coeq0i 40491 eldioph4b 40549 icccncfext 43318 srhmsubc 45522 fldc 45529 fldhmsubc 45530 rhmsubclem3 45534 srhmsubcALTV 45540 fldcALTV 45547 fldhmsubcALTV 45548 rhmsubcALTVlem4 45553 ssdisjdr 46042 sepnsepolem2 46104 |
Copyright terms: Public domain | W3C validator |