| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sslin | Structured version Visualization version GIF version | ||
| Description: Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| Ref | Expression |
|---|---|
| sslin | ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin 4208 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | |
| 2 | incom 4175 | . 2 ⊢ (𝐶 ∩ 𝐴) = (𝐴 ∩ 𝐶) | |
| 3 | incom 4175 | . 2 ⊢ (𝐶 ∩ 𝐵) = (𝐵 ∩ 𝐶) | |
| 4 | 1, 2, 3 | 3sstr4g 4003 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 df-ss 3934 |
| This theorem is referenced by: ss2in 4211 inxpssres 5658 ssres2 5978 predrelss 6313 sbthlem7 9063 kmlem5 10115 canthnum 10609 ioodisj 13450 hashun3 14356 dprdres 19967 dprd2da 19981 dmdprdsplit2lem 19984 srhmsubc 20596 rhmsubclem3 20603 fldc 20700 fldhmsubc 20701 cnprest 23183 isnrm3 23253 regsep2 23270 llycmpkgen2 23444 kqdisj 23626 regr1lem 23633 fclsbas 23915 fclscf 23919 flimfnfcls 23922 isfcf 23928 metdstri 24747 nulmbl2 25444 uniioombllem4 25494 volsup2 25513 volcn 25514 itg1climres 25622 limcresi 25793 limciun 25802 rlimcnp2 26883 rplogsum 27445 chssoc 31432 cmbr4i 31537 5oai 31597 3oalem6 31603 mdslmd4i 32269 atcvat4i 32333 imadifxp 32537 swrdrndisj 32886 1arithufdlem4 33525 crefss 33846 pnfneige0 33948 cldbnd 36321 neibastop1 36354 neibastop2 36356 onint1 36444 oninhaus 36445 bj-idres 37155 cntotbnd 37797 polcon3N 39918 osumcllem4N 39960 lcfrlem2 41544 mapfzcons1 42712 coeq0i 42748 eldioph4b 42806 icccncfext 45892 rhmsubcALTVlem4 48276 srhmsubcALTV 48317 fldcALTV 48324 fldhmsubcALTV 48325 ssdisjdr 48801 sepnsepolem2 48915 |
| Copyright terms: Public domain | W3C validator |