| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqbrtrrd | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
| Ref | Expression |
|---|---|
| eqbrtrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqbrtrrd.2 | ⊢ (𝜑 → 𝐴𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqbrtrrd | ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqbrtrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | eqcomd 2740 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
| 3 | eqbrtrrd.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐶) | |
| 4 | 2, 3 | eqbrtrd 5147 | 1 ⊢ (𝜑 → 𝐵𝑅𝐶) |
| Copyright terms: Public domain | W3C validator |