Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqbrtrrd | Structured version Visualization version GIF version |
Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999.) |
Ref | Expression |
---|---|
eqbrtrrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqbrtrrd.2 | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Ref | Expression |
---|---|
eqbrtrrd | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqbrtrrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | eqcomd 2745 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | eqbrtrrd.2 | . 2 ⊢ (𝜑 → 𝐴𝑅𝐶) | |
4 | 2, 3 | eqbrtrd 5097 | 1 ⊢ (𝜑 → 𝐵𝑅𝐶) |
Copyright terms: Public domain | W3C validator |