![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moi2 | Structured version Visualization version GIF version |
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.) |
Ref | Expression |
---|---|
moi2.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
moi2 | ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moi2.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | mob2 3711 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
3 | 2 | 3expa 1118 | . . 3 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) |
4 | 3 | biimprd 247 | . 2 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓 → 𝑥 = 𝐴)) |
5 | 4 | impr 455 | 1 ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃*wmo 2532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: fsum 15665 fprod 15884 txcn 23129 haustsms2 23640 |
Copyright terms: Public domain | W3C validator |