MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moi2 Structured version   Visualization version   GIF version

Theorem moi2 3725
Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
moi2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem moi2
StepHypRef Expression
1 moi2.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21mob2 3724 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
323expa 1117 . . 3 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝑥 = 𝐴𝜓))
43biimprd 248 . 2 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ 𝜑) → (𝜓𝑥 = 𝐴))
54impr 454 1 (((𝐴𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑𝜓)) → 𝑥 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480
This theorem is referenced by:  fsum  15753  fprod  15974  txcn  23650  haustsms2  24161
  Copyright terms: Public domain W3C validator