MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcn Structured version   Visualization version   GIF version

Theorem txcn 22685
Description: A map into the product of two topological spaces is continuous iff both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcn.1 𝑋 = 𝑅
txcn.2 𝑌 = 𝑆
txcn.3 𝑍 = (𝑋 × 𝑌)
txcn.4 𝑊 = 𝑈
txcn.5 𝑃 = (1st𝑍)
txcn.6 𝑄 = (2nd𝑍)
Assertion
Ref Expression
txcn ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))

Proof of Theorem txcn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 txcn.1 . . . . 5 𝑋 = 𝑅
21toptopon 21974 . . . 4 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
3 txcn.2 . . . . 5 𝑌 = 𝑆
43toptopon 21974 . . . 4 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌))
5 txcn.5 . . . . . . 7 𝑃 = (1st𝑍)
6 txcn.3 . . . . . . . 8 𝑍 = (𝑋 × 𝑌)
76reseq2i 5877 . . . . . . 7 (1st𝑍) = (1st ↾ (𝑋 × 𝑌))
85, 7eqtri 2766 . . . . . 6 𝑃 = (1st ↾ (𝑋 × 𝑌))
9 tx1cn 22668 . . . . . 6 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
108, 9eqeltrid 2843 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅))
11 txcn.6 . . . . . . 7 𝑄 = (2nd𝑍)
126reseq2i 5877 . . . . . . 7 (2nd𝑍) = (2nd ↾ (𝑋 × 𝑌))
1311, 12eqtri 2766 . . . . . 6 𝑄 = (2nd ↾ (𝑋 × 𝑌))
14 tx2cn 22669 . . . . . 6 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
1513, 14eqeltrid 2843 . . . . 5 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
16 cnco 22325 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → (𝑃𝐹) ∈ (𝑈 Cn 𝑅))
17 cnco 22325 . . . . . . 7 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝑄𝐹) ∈ (𝑈 Cn 𝑆))
1816, 17anim12dan 618 . . . . . 6 ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ (𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)))
1918expcom 413 . . . . 5 ((𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
2010, 15, 19syl2anc 583 . . . 4 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
212, 4, 20syl2anb 597 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
22213adant3 1130 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
23 cntop1 22299 . . . . . . . 8 ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top)
2423ad2antrl 724 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑈 ∈ Top)
25 txcn.4 . . . . . . . 8 𝑊 = 𝑈
2625topopn 21963 . . . . . . 7 (𝑈 ∈ Top → 𝑊𝑈)
2724, 26syl 17 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑊𝑈)
2825, 1cnf 22305 . . . . . . 7 ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) → (𝑃𝐹):𝑊𝑋)
2928ad2antrl 724 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑃𝐹):𝑊𝑋)
3025, 3cnf 22305 . . . . . . 7 ((𝑄𝐹) ∈ (𝑈 Cn 𝑆) → (𝑄𝐹):𝑊𝑌)
3130ad2antll 725 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑄𝐹):𝑊𝑌)
328, 13upxp 22682 . . . . . . 7 ((𝑊𝑈 ∧ (𝑃𝐹):𝑊𝑋 ∧ (𝑄𝐹):𝑊𝑌) → ∃!(:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
33 feq3 6567 . . . . . . . . . 10 (𝑍 = (𝑋 × 𝑌) → (:𝑊𝑍:𝑊⟶(𝑋 × 𝑌)))
346, 33ax-mp 5 . . . . . . . . 9 (:𝑊𝑍:𝑊⟶(𝑋 × 𝑌))
35343anbi1i 1155 . . . . . . . 8 ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ (:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3635eubii 2585 . . . . . . 7 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ ∃!(:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3732, 36sylibr 233 . . . . . 6 ((𝑊𝑈 ∧ (𝑃𝐹):𝑊𝑋 ∧ (𝑄𝐹):𝑊𝑌) → ∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
3827, 29, 31, 37syl3anc 1369 . . . . 5 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
39 euex 2577 . . . . 5 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
4038, 39syl 17 . . . 4 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
41 simpll3 1212 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹:𝑊𝑍)
4227adantr 480 . . . . . . 7 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝑊𝑈)
4341, 42fexd 7085 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹 ∈ V)
44 eumo 2578 . . . . . . . 8 (∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
4538, 44syl 17 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
4645adantr 480 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
47 simpr 484 . . . . . 6 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
48 3anass 1093 . . . . . . . 8 ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
49 coeq2 5756 . . . . . . . . . . . 12 (𝐹 = → (𝑃𝐹) = (𝑃))
50 coeq2 5756 . . . . . . . . . . . 12 (𝐹 = → (𝑄𝐹) = (𝑄))
5149, 50jca 511 . . . . . . . . . . 11 (𝐹 = → ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
5251eqcoms 2746 . . . . . . . . . 10 ( = 𝐹 → ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
5352biantrud 531 . . . . . . . . 9 ( = 𝐹 → (:𝑊𝑍 ↔ (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))))
54 feq1 6565 . . . . . . . . 9 ( = 𝐹 → (:𝑊𝑍𝐹:𝑊𝑍))
5553, 54bitr3d 280 . . . . . . . 8 ( = 𝐹 → ((:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) ↔ 𝐹:𝑊𝑍))
5648, 55syl5bb 282 . . . . . . 7 ( = 𝐹 → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ 𝐹:𝑊𝑍))
5756moi2 3646 . . . . . 6 (((𝐹 ∈ V ∧ ∃*(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) ∧ ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ 𝐹:𝑊𝑍)) → = 𝐹)
5843, 46, 47, 41, 57syl22anc 835 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → = 𝐹)
59 eqid 2738 . . . . . . . . . 10 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
6059, 1, 3, 6, 5, 11uptx 22684 . . . . . . . . 9 (((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)) → ∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
6160adantl 481 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))
62 df-reu 3070 . . . . . . . . . 10 (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ↔ ∃!( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
63 euex 2577 . . . . . . . . . 10 (∃!( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
6462, 63sylbi 216 . . . . . . . . 9 (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
65 eqid 2738 . . . . . . . . . . . . . . 15 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
6625, 65cnf 22305 . . . . . . . . . . . . . 14 ( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → :𝑊 (𝑅 ×t 𝑆))
671, 3txuni 22651 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = (𝑅 ×t 𝑆))
686, 67eqtrid 2790 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 = (𝑅 ×t 𝑆))
69683adant3 1130 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → 𝑍 = (𝑅 ×t 𝑆))
7069adantr 480 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑍 = (𝑅 ×t 𝑆))
7170feq3d 6571 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (:𝑊𝑍:𝑊 (𝑅 ×t 𝑆)))
7266, 71syl5ibr 245 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → :𝑊𝑍))
7372anim1d 610 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)))))
7473, 48syl6ibr 251 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))))
75 simpl 482 . . . . . . . . . . 11 (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
7674, 75jca2 513 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
7776eximdv 1921 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (∃( ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
7864, 77syl5 34 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → (∃! ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))))
7961, 78mpd 15 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
80 eupick 2635 . . . . . . 7 ((∃!(:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∃((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) ∧ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
8138, 79, 80syl2anc 583 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → ((:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄)) → ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
8281imp 406 . . . . 5 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
8358, 82eqeltrrd 2840 . . . 4 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (:𝑊𝑍 ∧ (𝑃𝐹) = (𝑃) ∧ (𝑄𝐹) = (𝑄))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
8440, 83exlimddv 1939 . . 3 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) ∧ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))
8584ex 412 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆)) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))))
8622, 85impbid 211 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄𝐹) ∈ (𝑈 Cn 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  ∃*wmo 2538  ∃!weu 2568  ∃!wreu 3065  Vcvv 3422   cuni 4836   × cxp 5578  cres 5582  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator