MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haustsms2 Structured version   Visualization version   GIF version

Theorem haustsms2 24052
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
tsmscl.b 𝐵 = (Base‘𝐺)
tsmscl.1 (𝜑𝐺 ∈ CMnd)
tsmscl.2 (𝜑𝐺 ∈ TopSp)
tsmscl.a (𝜑𝐴𝑉)
tsmscl.f (𝜑𝐹:𝐴𝐵)
haustsms.j 𝐽 = (TopOpen‘𝐺)
haustsms.h (𝜑𝐽 ∈ Haus)
Assertion
Ref Expression
haustsms2 (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋}))

Proof of Theorem haustsms2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹))
2 tsmscl.b . . . . . . . 8 𝐵 = (Base‘𝐺)
3 tsmscl.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4 tsmscl.2 . . . . . . . 8 (𝜑𝐺 ∈ TopSp)
5 tsmscl.a . . . . . . . 8 (𝜑𝐴𝑉)
6 tsmscl.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
7 haustsms.j . . . . . . . 8 𝐽 = (TopOpen‘𝐺)
8 haustsms.h . . . . . . . 8 (𝜑𝐽 ∈ Haus)
92, 3, 4, 5, 6, 7, 8haustsms 24051 . . . . . . 7 (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
109adantr 480 . . . . . 6 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹))
11 eleq1 2819 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑋 ∈ (𝐺 tsums 𝐹)))
1211moi2 3670 . . . . . . . 8 (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑋 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋)
1312ancom2s 650 . . . . . . 7 (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑋 ∈ (𝐺 tsums 𝐹) ∧ 𝑥 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋)
1413expr 456 . . . . . 6 (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋))
151, 10, 1, 14syl21anc 837 . . . . 5 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋))
16 velsn 4589 . . . . 5 (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋)
1715, 16imbitrrdi 252 . . . 4 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ {𝑋}))
1817ssrdv 3935 . . 3 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ⊆ {𝑋})
19 snssi 4757 . . . 4 (𝑋 ∈ (𝐺 tsums 𝐹) → {𝑋} ⊆ (𝐺 tsums 𝐹))
2019adantl 481 . . 3 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → {𝑋} ⊆ (𝐺 tsums 𝐹))
2118, 20eqssd 3947 . 2 ((𝜑𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = {𝑋})
2221ex 412 1 (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ∃*wmo 2533  wss 3897  {csn 4573  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  TopOpenctopn 17325  CMndccmn 19692  TopSpctps 22847  Hauscha 23223   tsums ctsu 24041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-cntz 19229  df-cmn 19694  df-fbas 21288  df-fg 21289  df-top 22809  df-topon 22826  df-topsp 22848  df-nei 23013  df-haus 23230  df-fil 23761  df-flim 23854  df-flf 23855  df-tsms 24042
This theorem is referenced by:  haustsmsid  24056  xrge0tsms  24750  xrge0tsmsd  33042
  Copyright terms: Public domain W3C validator