Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > haustsms2 | Structured version Visualization version GIF version |
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
tsmscl.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmscl.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmscl.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmscl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmscl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
haustsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
haustsms.h | ⊢ (𝜑 → 𝐽 ∈ Haus) |
Ref | Expression |
---|---|
haustsms2 | ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
2 | tsmscl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tsmscl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tsmscl.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
5 | tsmscl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | tsmscl.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | haustsms.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
8 | haustsms.h | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Haus) | |
9 | 2, 3, 4, 5, 6, 7, 8 | haustsms 23195 | . . . . . . 7 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
11 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑋 ∈ (𝐺 tsums 𝐹))) | |
12 | 11 | moi2 3646 | . . . . . . . 8 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑋 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
13 | 12 | ancom2s 646 | . . . . . . 7 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑋 ∈ (𝐺 tsums 𝐹) ∧ 𝑥 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
14 | 13 | expr 456 | . . . . . 6 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
15 | 1, 10, 1, 14 | syl21anc 834 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
16 | velsn 4574 | . . . . 5 ⊢ (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋) | |
17 | 15, 16 | syl6ibr 251 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ {𝑋})) |
18 | 17 | ssrdv 3923 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ⊆ {𝑋}) |
19 | snssi 4738 | . . . 4 ⊢ (𝑋 ∈ (𝐺 tsums 𝐹) → {𝑋} ⊆ (𝐺 tsums 𝐹)) | |
20 | 19 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → {𝑋} ⊆ (𝐺 tsums 𝐹)) |
21 | 18, 20 | eqssd 3934 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = {𝑋}) |
22 | 21 | ex 412 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 ⊆ wss 3883 {csn 4558 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 TopOpenctopn 17049 CMndccmn 19301 TopSpctps 21989 Hauscha 22367 tsums ctsu 23185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-nei 22157 df-haus 22374 df-fil 22905 df-flim 22998 df-flf 22999 df-tsms 23186 |
This theorem is referenced by: haustsmsid 23200 xrge0tsms 23903 xrge0tsmsd 31219 |
Copyright terms: Public domain | W3C validator |