![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustsms2 | Structured version Visualization version GIF version |
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
tsmscl.b | ⊢ 𝐵 = (Base‘𝐺) |
tsmscl.1 | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
tsmscl.2 | ⊢ (𝜑 → 𝐺 ∈ TopSp) |
tsmscl.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
tsmscl.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
haustsms.j | ⊢ 𝐽 = (TopOpen‘𝐺) |
haustsms.h | ⊢ (𝜑 → 𝐽 ∈ Haus) |
Ref | Expression |
---|---|
haustsms2 | ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → 𝑋 ∈ (𝐺 tsums 𝐹)) | |
2 | tsmscl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
3 | tsmscl.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | tsmscl.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 ∈ TopSp) | |
5 | tsmscl.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | tsmscl.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
7 | haustsms.j | . . . . . . . 8 ⊢ 𝐽 = (TopOpen‘𝐺) | |
8 | haustsms.h | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ∈ Haus) | |
9 | 2, 3, 4, 5, 6, 7, 8 | haustsms 24084 | . . . . . . 7 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
10 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) |
11 | eleq1 2813 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ 𝑋 ∈ (𝐺 tsums 𝐹))) | |
12 | 11 | moi2 3708 | . . . . . . . 8 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑋 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
13 | 12 | ancom2s 648 | . . . . . . 7 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ (𝑋 ∈ (𝐺 tsums 𝐹) ∧ 𝑥 ∈ (𝐺 tsums 𝐹))) → 𝑥 = 𝑋) |
14 | 13 | expr 455 | . . . . . 6 ⊢ (((𝑋 ∈ (𝐺 tsums 𝐹) ∧ ∃*𝑥 𝑥 ∈ (𝐺 tsums 𝐹)) ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
15 | 1, 10, 1, 14 | syl21anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 = 𝑋)) |
16 | velsn 4646 | . . . . 5 ⊢ (𝑥 ∈ {𝑋} ↔ 𝑥 = 𝑋) | |
17 | 15, 16 | imbitrrdi 251 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝑥 ∈ (𝐺 tsums 𝐹) → 𝑥 ∈ {𝑋})) |
18 | 17 | ssrdv 3982 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) ⊆ {𝑋}) |
19 | snssi 4813 | . . . 4 ⊢ (𝑋 ∈ (𝐺 tsums 𝐹) → {𝑋} ⊆ (𝐺 tsums 𝐹)) | |
20 | 19 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → {𝑋} ⊆ (𝐺 tsums 𝐹)) |
21 | 18, 20 | eqssd 3994 | . 2 ⊢ ((𝜑 ∧ 𝑋 ∈ (𝐺 tsums 𝐹)) → (𝐺 tsums 𝐹) = {𝑋}) |
22 | 21 | ex 411 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐺 tsums 𝐹) → (𝐺 tsums 𝐹) = {𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃*wmo 2526 ⊆ wss 3944 {csn 4630 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 TopOpenctopn 17406 CMndccmn 19747 TopSpctps 22878 Hauscha 23256 tsums ctsu 24074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-0g 17426 df-gsum 17427 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-cntz 19280 df-cmn 19749 df-fbas 21293 df-fg 21294 df-top 22840 df-topon 22857 df-topsp 22879 df-nei 23046 df-haus 23263 df-fil 23794 df-flim 23887 df-flf 23888 df-tsms 24075 |
This theorem is referenced by: haustsmsid 24089 xrge0tsms 24794 xrge0tsmsd 32861 |
Copyright terms: Public domain | W3C validator |