![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > haustsms2 | Structured version Visualization version GIF version |
Description: In a Hausdorff topological group, a sum has at most one limit point. (Contributed by Mario Carneiro, 13-Sep-2015.) |
Ref | Expression |
---|---|
tsmscl.b | β’ π΅ = (BaseβπΊ) |
tsmscl.1 | β’ (π β πΊ β CMnd) |
tsmscl.2 | β’ (π β πΊ β TopSp) |
tsmscl.a | β’ (π β π΄ β π) |
tsmscl.f | β’ (π β πΉ:π΄βΆπ΅) |
haustsms.j | β’ π½ = (TopOpenβπΊ) |
haustsms.h | β’ (π β π½ β Haus) |
Ref | Expression |
---|---|
haustsms2 | β’ (π β (π β (πΊ tsums πΉ) β (πΊ tsums πΉ) = {π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 486 | . . . . . 6 β’ ((π β§ π β (πΊ tsums πΉ)) β π β (πΊ tsums πΉ)) | |
2 | tsmscl.b | . . . . . . . 8 β’ π΅ = (BaseβπΊ) | |
3 | tsmscl.1 | . . . . . . . 8 β’ (π β πΊ β CMnd) | |
4 | tsmscl.2 | . . . . . . . 8 β’ (π β πΊ β TopSp) | |
5 | tsmscl.a | . . . . . . . 8 β’ (π β π΄ β π) | |
6 | tsmscl.f | . . . . . . . 8 β’ (π β πΉ:π΄βΆπ΅) | |
7 | haustsms.j | . . . . . . . 8 β’ π½ = (TopOpenβπΊ) | |
8 | haustsms.h | . . . . . . . 8 β’ (π β π½ β Haus) | |
9 | 2, 3, 4, 5, 6, 7, 8 | haustsms 23640 | . . . . . . 7 β’ (π β β*π₯ π₯ β (πΊ tsums πΉ)) |
10 | 9 | adantr 482 | . . . . . 6 β’ ((π β§ π β (πΊ tsums πΉ)) β β*π₯ π₯ β (πΊ tsums πΉ)) |
11 | eleq1 2822 | . . . . . . . . 9 β’ (π₯ = π β (π₯ β (πΊ tsums πΉ) β π β (πΊ tsums πΉ))) | |
12 | 11 | moi2 3713 | . . . . . . . 8 β’ (((π β (πΊ tsums πΉ) β§ β*π₯ π₯ β (πΊ tsums πΉ)) β§ (π₯ β (πΊ tsums πΉ) β§ π β (πΊ tsums πΉ))) β π₯ = π) |
13 | 12 | ancom2s 649 | . . . . . . 7 β’ (((π β (πΊ tsums πΉ) β§ β*π₯ π₯ β (πΊ tsums πΉ)) β§ (π β (πΊ tsums πΉ) β§ π₯ β (πΊ tsums πΉ))) β π₯ = π) |
14 | 13 | expr 458 | . . . . . 6 β’ (((π β (πΊ tsums πΉ) β§ β*π₯ π₯ β (πΊ tsums πΉ)) β§ π β (πΊ tsums πΉ)) β (π₯ β (πΊ tsums πΉ) β π₯ = π)) |
15 | 1, 10, 1, 14 | syl21anc 837 | . . . . 5 β’ ((π β§ π β (πΊ tsums πΉ)) β (π₯ β (πΊ tsums πΉ) β π₯ = π)) |
16 | velsn 4645 | . . . . 5 β’ (π₯ β {π} β π₯ = π) | |
17 | 15, 16 | syl6ibr 252 | . . . 4 β’ ((π β§ π β (πΊ tsums πΉ)) β (π₯ β (πΊ tsums πΉ) β π₯ β {π})) |
18 | 17 | ssrdv 3989 | . . 3 β’ ((π β§ π β (πΊ tsums πΉ)) β (πΊ tsums πΉ) β {π}) |
19 | snssi 4812 | . . . 4 β’ (π β (πΊ tsums πΉ) β {π} β (πΊ tsums πΉ)) | |
20 | 19 | adantl 483 | . . 3 β’ ((π β§ π β (πΊ tsums πΉ)) β {π} β (πΊ tsums πΉ)) |
21 | 18, 20 | eqssd 4000 | . 2 β’ ((π β§ π β (πΊ tsums πΉ)) β (πΊ tsums πΉ) = {π}) |
22 | 21 | ex 414 | 1 β’ (π β (π β (πΊ tsums πΉ) β (πΊ tsums πΉ) = {π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β*wmo 2533 β wss 3949 {csn 4629 βΆwf 6540 βcfv 6544 (class class class)co 7409 Basecbs 17144 TopOpenctopn 17367 CMndccmn 19648 TopSpctps 22434 Hauscha 22812 tsums ctsu 23630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-0g 17387 df-gsum 17388 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-cntz 19181 df-cmn 19650 df-fbas 20941 df-fg 20942 df-top 22396 df-topon 22413 df-topsp 22435 df-nei 22602 df-haus 22819 df-fil 23350 df-flim 23443 df-flf 23444 df-tsms 23631 |
This theorem is referenced by: haustsmsid 23645 xrge0tsms 24350 xrge0tsmsd 32209 |
Copyright terms: Public domain | W3C validator |