Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > morex | Structured version Visualization version GIF version |
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
morex.1 | ⊢ 𝐵 ∈ V |
morex.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
morex | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exancom 1865 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
4 | nfmo1 2557 | . . . . . 6 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
5 | nfe1 2149 | . . . . . 6 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴) | |
6 | 4, 5 | nfan 1903 | . . . . 5 ⊢ Ⅎ𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
7 | mopick 2627 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜑 → 𝑥 ∈ 𝐴)) | |
8 | 6, 7 | alrimi 2209 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
9 | morex.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
10 | morex.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
11 | eleq1 2826 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | imbi12d 344 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜓 → 𝐵 ∈ 𝐴))) |
13 | 9, 12 | spcv 3534 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (𝜓 → 𝐵 ∈ 𝐴)) |
14 | 8, 13 | syl 17 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜓 → 𝐵 ∈ 𝐴)) |
15 | 3, 14 | sylan2b 593 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
16 | 15 | ancoms 458 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃*wmo 2538 ∃wrex 3064 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |