![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > morex | Structured version Visualization version GIF version |
Description: Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
morex.1 | ⊢ 𝐵 ∈ V |
morex.2 | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
morex | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3069 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exancom 1862 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) | |
3 | 1, 2 | bitri 274 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
4 | nfmo1 2549 | . . . . . 6 ⊢ Ⅎ𝑥∃*𝑥𝜑 | |
5 | nfe1 2145 | . . . . . 6 ⊢ Ⅎ𝑥∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴) | |
6 | 4, 5 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) |
7 | mopick 2619 | . . . . 5 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜑 → 𝑥 ∈ 𝐴)) | |
8 | 6, 7 | alrimi 2204 | . . . 4 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) |
9 | morex.1 | . . . . 5 ⊢ 𝐵 ∈ V | |
10 | morex.2 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
11 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
12 | 10, 11 | imbi12d 343 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝜑 → 𝑥 ∈ 𝐴) ↔ (𝜓 → 𝐵 ∈ 𝐴))) |
13 | 9, 12 | spcv 3594 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 ∈ 𝐴) → (𝜓 → 𝐵 ∈ 𝐴)) |
14 | 8, 13 | syl 17 | . . 3 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝑥 ∈ 𝐴)) → (𝜓 → 𝐵 ∈ 𝐴)) |
15 | 3, 14 | sylan2b 592 | . 2 ⊢ ((∃*𝑥𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
16 | 15 | ancoms 457 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∃*wmo 2530 ∃wrex 3068 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-rex 3069 df-v 3474 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |