Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > d0mat2pmat | Structured version Visualization version GIF version |
Description: The transformed empty set as matrix of dimenson 0 is the empty set (i.e., the polynomial matrix of dimension 0). (Contributed by AV, 4-Aug-2019.) |
Ref | Expression |
---|---|
d0mat2pmat | ⊢ (𝑅 ∈ 𝑉 → ((∅ matToPolyMat 𝑅)‘∅) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0fin 8979 | . . 3 ⊢ ∅ ∈ Fin | |
2 | id 22 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ 𝑉) | |
3 | 0ex 5234 | . . . . 5 ⊢ ∅ ∈ V | |
4 | 3 | snid 4600 | . . . 4 ⊢ ∅ ∈ {∅} |
5 | mat0dimbas0 21643 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (Base‘(∅ Mat 𝑅)) = {∅}) | |
6 | 4, 5 | eleqtrrid 2841 | . . 3 ⊢ (𝑅 ∈ 𝑉 → ∅ ∈ (Base‘(∅ Mat 𝑅))) |
7 | eqid 2733 | . . . 4 ⊢ (∅ matToPolyMat 𝑅) = (∅ matToPolyMat 𝑅) | |
8 | eqid 2733 | . . . 4 ⊢ (∅ Mat 𝑅) = (∅ Mat 𝑅) | |
9 | eqid 2733 | . . . 4 ⊢ (Base‘(∅ Mat 𝑅)) = (Base‘(∅ Mat 𝑅)) | |
10 | eqid 2733 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
11 | eqid 2733 | . . . 4 ⊢ (algSc‘(Poly1‘𝑅)) = (algSc‘(Poly1‘𝑅)) | |
12 | 7, 8, 9, 10, 11 | mat2pmatval 21901 | . . 3 ⊢ ((∅ ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ ∅ ∈ (Base‘(∅ Mat 𝑅))) → ((∅ matToPolyMat 𝑅)‘∅) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ ((algSc‘(Poly1‘𝑅))‘(𝑥∅𝑦)))) |
13 | 1, 2, 6, 12 | mp3an2i 1464 | . 2 ⊢ (𝑅 ∈ 𝑉 → ((∅ matToPolyMat 𝑅)‘∅) = (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ ((algSc‘(Poly1‘𝑅))‘(𝑥∅𝑦)))) |
14 | mpo0 7380 | . 2 ⊢ (𝑥 ∈ ∅, 𝑦 ∈ ∅ ↦ ((algSc‘(Poly1‘𝑅))‘(𝑥∅𝑦))) = ∅ | |
15 | 13, 14 | eqtrdi 2789 | 1 ⊢ (𝑅 ∈ 𝑉 → ((∅ matToPolyMat 𝑅)‘∅) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 ∅c0 4259 {csn 4564 ‘cfv 6447 (class class class)co 7295 ∈ cmpo 7297 Fincfn 8753 Basecbs 16940 algSccascl 21087 Poly1cpl1 21376 Mat cmat 21582 matToPolyMat cmat2pmat 21881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-ot 4573 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-supp 7998 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-ixp 8706 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-fsupp 9157 df-sup 9229 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-3 12065 df-4 12066 df-5 12067 df-6 12068 df-7 12069 df-8 12070 df-9 12071 df-n0 12262 df-z 12348 df-dec 12466 df-uz 12611 df-fz 13268 df-struct 16876 df-sets 16893 df-slot 16911 df-ndx 16923 df-base 16941 df-ress 16970 df-plusg 17003 df-mulr 17004 df-sca 17006 df-vsca 17007 df-ip 17008 df-tset 17009 df-ple 17010 df-ds 17012 df-hom 17014 df-cco 17015 df-0g 17180 df-prds 17186 df-pws 17188 df-sra 20462 df-rgmod 20463 df-dsmm 20967 df-frlm 20982 df-mat 21583 df-mat2pmat 21884 |
This theorem is referenced by: chpmat0d 22011 |
Copyright terms: Public domain | W3C validator |