| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 | ⊢ (𝜑 → 𝜓) |
| mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| mt4d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9176 fin1a2s 10367 gchinf 10610 pwfseqlem4 10615 pcfac 16870 prmreclem3 16889 sylow1lem1 19528 irredrmul 20336 mdetunilem9 22507 ioorcl2 25473 itg2gt0 25661 mdegmullem 25983 atom1d 32282 rr-phpd 44198 notnotrALT 44519 fourierdlem79 46183 |
| Copyright terms: Public domain | W3C validator |