| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 | ⊢ (𝜑 → 𝜓) |
| mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| mt4d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9231 phpeqdOLD 9239 fin1a2s 10433 gchinf 10676 pwfseqlem4 10681 pcfac 16924 prmreclem3 16943 sylow1lem1 19584 irredrmul 20392 mdetunilem9 22563 ioorcl2 25530 itg2gt0 25718 mdegmullem 26040 atom1d 32339 rr-phpd 44200 notnotrALT 44521 fourierdlem79 46181 |
| Copyright terms: Public domain | W3C validator |