MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt4d Structured version   Visualization version   GIF version

Theorem mt4d 117
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.)
Hypotheses
Ref Expression
mt4d.1 (𝜑𝜓)
mt4d.2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
Assertion
Ref Expression
mt4d (𝜑𝜒)

Proof of Theorem mt4d
StepHypRef Expression
1 mt4d.1 . 2 (𝜑𝜓)
2 mt4d.2 . . 3 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32con4d 115 . 2 (𝜑 → (𝜓𝜒))
41, 3mpd 15 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt4i  118  pm2.18d  127  phpeqd  9182  fin1a2s  10374  gchinf  10617  pwfseqlem4  10622  pcfac  16877  prmreclem3  16896  sylow1lem1  19535  irredrmul  20343  mdetunilem9  22514  ioorcl2  25480  itg2gt0  25668  mdegmullem  25990  atom1d  32289  rr-phpd  44205  notnotrALT  44526  fourierdlem79  46190
  Copyright terms: Public domain W3C validator