MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt4d Structured version   Visualization version   GIF version

Theorem mt4d 117
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.)
Hypotheses
Ref Expression
mt4d.1 (𝜑𝜓)
mt4d.2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
Assertion
Ref Expression
mt4d (𝜑𝜒)

Proof of Theorem mt4d
StepHypRef Expression
1 mt4d.1 . 2 (𝜑𝜓)
2 mt4d.2 . . 3 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32con4d 115 . 2 (𝜑 → (𝜓𝜒))
41, 3mpd 15 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt4i  118  pm2.18d  127  phpeqd  8902  fin1a2s  10101  gchinf  10344  pwfseqlem4  10349  pcfac  16528  prmreclem3  16547  sylow1lem1  19118  irredrmul  19864  mdetunilem9  21677  ioorcl2  24641  itg2gt0  24830  mdegmullem  25148  atom1d  30616  rr-phpd  41710  notnotrALT  42038  fourierdlem79  43616
  Copyright terms: Public domain W3C validator