| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 | ⊢ (𝜑 → 𝜓) |
| mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| mt4d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9116 fin1a2s 10297 gchinf 10540 pwfseqlem4 10545 pcfac 16803 prmreclem3 16822 sylow1lem1 19503 irredrmul 20338 mdetunilem9 22528 ioorcl2 25493 itg2gt0 25681 mdegmullem 26003 atom1d 32323 rr-phpd 44221 notnotrALT 44541 fourierdlem79 46202 |
| Copyright terms: Public domain | W3C validator |