Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
Ref | Expression |
---|---|
mt4d.1 | ⊢ (𝜑 → 𝜓) |
mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Ref | Expression |
---|---|
mt4d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 8998 phpeqdOLD 9008 fin1a2s 10170 gchinf 10413 pwfseqlem4 10418 pcfac 16600 prmreclem3 16619 sylow1lem1 19203 irredrmul 19949 mdetunilem9 21769 ioorcl2 24736 itg2gt0 24925 mdegmullem 25243 atom1d 30715 rr-phpd 41821 notnotrALT 42149 fourierdlem79 43726 |
Copyright terms: Public domain | W3C validator |