| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 | ⊢ (𝜑 → 𝜓) |
| mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| mt4d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9131 fin1a2s 10315 gchinf 10558 pwfseqlem4 10563 pcfac 16821 prmreclem3 16840 sylow1lem1 19520 irredrmul 20355 mdetunilem9 22545 ioorcl2 25510 itg2gt0 25698 mdegmullem 26020 atom1d 32344 rr-phpd 44316 notnotrALT 44636 fourierdlem79 46297 |
| Copyright terms: Public domain | W3C validator |