MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mt4d Structured version   Visualization version   GIF version

Theorem mt4d 117
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.)
Hypotheses
Ref Expression
mt4d.1 (𝜑𝜓)
mt4d.2 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
Assertion
Ref Expression
mt4d (𝜑𝜒)

Proof of Theorem mt4d
StepHypRef Expression
1 mt4d.1 . 2 (𝜑𝜓)
2 mt4d.2 . . 3 (𝜑 → (¬ 𝜒 → ¬ 𝜓))
32con4d 115 . 2 (𝜑 → (𝜓𝜒))
41, 3mpd 15 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  mt4i  118  pm2.18d  127  phpeqd  8998  phpeqdOLD  9008  fin1a2s  10170  gchinf  10413  pwfseqlem4  10418  pcfac  16600  prmreclem3  16619  sylow1lem1  19203  irredrmul  19949  mdetunilem9  21769  ioorcl2  24736  itg2gt0  24925  mdegmullem  25243  atom1d  30715  rr-phpd  41821  notnotrALT  42149  fourierdlem79  43726
  Copyright terms: Public domain W3C validator