Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
Ref | Expression |
---|---|
mt4d.1 | ⊢ (𝜑 → 𝜓) |
mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Ref | Expression |
---|---|
mt4d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 8902 fin1a2s 10101 gchinf 10344 pwfseqlem4 10349 pcfac 16528 prmreclem3 16547 sylow1lem1 19118 irredrmul 19864 mdetunilem9 21677 ioorcl2 24641 itg2gt0 24830 mdegmullem 25148 atom1d 30616 rr-phpd 41710 notnotrALT 42038 fourierdlem79 43616 |
Copyright terms: Public domain | W3C validator |