![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version |
Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
Ref | Expression |
---|---|
mt4d.1 | ⊢ (𝜑 → 𝜓) |
mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
Ref | Expression |
---|---|
mt4d | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9278 phpeqdOLD 9288 fin1a2s 10483 gchinf 10726 pwfseqlem4 10731 pcfac 16946 prmreclem3 16965 sylow1lem1 19640 irredrmul 20453 mdetunilem9 22647 ioorcl2 25626 itg2gt0 25815 mdegmullem 26137 atom1d 32385 rr-phpd 44172 notnotrALT 44500 fourierdlem79 46106 |
Copyright terms: Public domain | W3C validator |