| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mt4d | Structured version Visualization version GIF version | ||
| Description: Modus tollens deduction. Deduction form of mt4 116. (Contributed by NM, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| mt4d.1 | ⊢ (𝜑 → 𝜓) |
| mt4d.2 | ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) |
| Ref | Expression |
|---|---|
| mt4d | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mt4d.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | mt4d.2 | . . 3 ⊢ (𝜑 → (¬ 𝜒 → ¬ 𝜓)) | |
| 3 | 2 | con4d 115 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 4 | 1, 3 | mpd 15 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem is referenced by: mt4i 118 pm2.18d 127 phpeqd 9182 fin1a2s 10374 gchinf 10617 pwfseqlem4 10622 pcfac 16877 prmreclem3 16896 sylow1lem1 19535 irredrmul 20343 mdetunilem9 22514 ioorcl2 25480 itg2gt0 25668 mdegmullem 25990 atom1d 32289 rr-phpd 44205 notnotrALT 44526 fourierdlem79 46190 |
| Copyright terms: Public domain | W3C validator |