MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow1lem1 Structured version   Visualization version   GIF version

Theorem sylow1lem1 19466
Description: Lemma for sylow1 19471. The p-adic valuation of the size of 𝑆 is equal to the number of excess powers of 𝑃 in (β™―β€˜π‘‹) / (𝑃↑𝑁). (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
sylow1.x 𝑋 = (Baseβ€˜πΊ)
sylow1.g (πœ‘ β†’ 𝐺 ∈ Grp)
sylow1.f (πœ‘ β†’ 𝑋 ∈ Fin)
sylow1.p (πœ‘ β†’ 𝑃 ∈ β„™)
sylow1.n (πœ‘ β†’ 𝑁 ∈ β„•0)
sylow1.d (πœ‘ β†’ (𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹))
sylow1lem.a + = (+gβ€˜πΊ)
sylow1lem.s 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (β™―β€˜π‘ ) = (𝑃↑𝑁)}
Assertion
Ref Expression
sylow1lem1 (πœ‘ β†’ ((β™―β€˜π‘†) ∈ β„• ∧ (𝑃 pCnt (β™―β€˜π‘†)) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁)))
Distinct variable groups:   𝑁,𝑠   𝑋,𝑠   + ,𝑠   𝐺,𝑠   𝑃,𝑠
Allowed substitution hints:   πœ‘(𝑠)   𝑆(𝑠)

Proof of Theorem sylow1lem1
Dummy variables π‘₯ 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sylow1.f . . . . 5 (πœ‘ β†’ 𝑋 ∈ Fin)
2 sylow1.p . . . . . . . 8 (πœ‘ β†’ 𝑃 ∈ β„™)
3 prmnn 16611 . . . . . . . 8 (𝑃 ∈ β„™ β†’ 𝑃 ∈ β„•)
42, 3syl 17 . . . . . . 7 (πœ‘ β†’ 𝑃 ∈ β„•)
5 sylow1.n . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ β„•0)
64, 5nnexpcld 14208 . . . . . 6 (πœ‘ β†’ (𝑃↑𝑁) ∈ β„•)
76nnzd 12585 . . . . 5 (πœ‘ β†’ (𝑃↑𝑁) ∈ β„€)
8 hashbc 14412 . . . . 5 ((𝑋 ∈ Fin ∧ (𝑃↑𝑁) ∈ β„€) β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) = (β™―β€˜{𝑠 ∈ 𝒫 𝑋 ∣ (β™―β€˜π‘ ) = (𝑃↑𝑁)}))
91, 7, 8syl2anc 585 . . . 4 (πœ‘ β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) = (β™―β€˜{𝑠 ∈ 𝒫 𝑋 ∣ (β™―β€˜π‘ ) = (𝑃↑𝑁)}))
10 sylow1lem.s . . . . 5 𝑆 = {𝑠 ∈ 𝒫 𝑋 ∣ (β™―β€˜π‘ ) = (𝑃↑𝑁)}
1110fveq2i 6895 . . . 4 (β™―β€˜π‘†) = (β™―β€˜{𝑠 ∈ 𝒫 𝑋 ∣ (β™―β€˜π‘ ) = (𝑃↑𝑁)})
129, 11eqtr4di 2791 . . 3 (πœ‘ β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) = (β™―β€˜π‘†))
13 sylow1.d . . . . . 6 (πœ‘ β†’ (𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹))
14 sylow1.g . . . . . . . . . 10 (πœ‘ β†’ 𝐺 ∈ Grp)
15 sylow1.x . . . . . . . . . . 11 𝑋 = (Baseβ€˜πΊ)
1615grpbn0 18851 . . . . . . . . . 10 (𝐺 ∈ Grp β†’ 𝑋 β‰  βˆ…)
1714, 16syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝑋 β‰  βˆ…)
18 hasheq0 14323 . . . . . . . . . . 11 (𝑋 ∈ Fin β†’ ((β™―β€˜π‘‹) = 0 ↔ 𝑋 = βˆ…))
191, 18syl 17 . . . . . . . . . 10 (πœ‘ β†’ ((β™―β€˜π‘‹) = 0 ↔ 𝑋 = βˆ…))
2019necon3bbid 2979 . . . . . . . . 9 (πœ‘ β†’ (Β¬ (β™―β€˜π‘‹) = 0 ↔ 𝑋 β‰  βˆ…))
2117, 20mpbird 257 . . . . . . . 8 (πœ‘ β†’ Β¬ (β™―β€˜π‘‹) = 0)
22 hashcl 14316 . . . . . . . . . . 11 (𝑋 ∈ Fin β†’ (β™―β€˜π‘‹) ∈ β„•0)
231, 22syl 17 . . . . . . . . . 10 (πœ‘ β†’ (β™―β€˜π‘‹) ∈ β„•0)
24 elnn0 12474 . . . . . . . . . 10 ((β™―β€˜π‘‹) ∈ β„•0 ↔ ((β™―β€˜π‘‹) ∈ β„• ∨ (β™―β€˜π‘‹) = 0))
2523, 24sylib 217 . . . . . . . . 9 (πœ‘ β†’ ((β™―β€˜π‘‹) ∈ β„• ∨ (β™―β€˜π‘‹) = 0))
2625ord 863 . . . . . . . 8 (πœ‘ β†’ (Β¬ (β™―β€˜π‘‹) ∈ β„• β†’ (β™―β€˜π‘‹) = 0))
2721, 26mt3d 148 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π‘‹) ∈ β„•)
28 dvdsle 16253 . . . . . . 7 (((𝑃↑𝑁) ∈ β„€ ∧ (β™―β€˜π‘‹) ∈ β„•) β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) β†’ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
297, 27, 28syl2anc 585 . . . . . 6 (πœ‘ β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) β†’ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
3013, 29mpd 15 . . . . 5 (πœ‘ β†’ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹))
316nnnn0d 12532 . . . . . . 7 (πœ‘ β†’ (𝑃↑𝑁) ∈ β„•0)
32 nn0uz 12864 . . . . . . 7 β„•0 = (β„€β‰₯β€˜0)
3331, 32eleqtrdi 2844 . . . . . 6 (πœ‘ β†’ (𝑃↑𝑁) ∈ (β„€β‰₯β€˜0))
3423nn0zd 12584 . . . . . 6 (πœ‘ β†’ (β™―β€˜π‘‹) ∈ β„€)
35 elfz5 13493 . . . . . 6 (((𝑃↑𝑁) ∈ (β„€β‰₯β€˜0) ∧ (β™―β€˜π‘‹) ∈ β„€) β†’ ((𝑃↑𝑁) ∈ (0...(β™―β€˜π‘‹)) ↔ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
3633, 34, 35syl2anc 585 . . . . 5 (πœ‘ β†’ ((𝑃↑𝑁) ∈ (0...(β™―β€˜π‘‹)) ↔ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
3730, 36mpbird 257 . . . 4 (πœ‘ β†’ (𝑃↑𝑁) ∈ (0...(β™―β€˜π‘‹)))
38 bccl2 14283 . . . 4 ((𝑃↑𝑁) ∈ (0...(β™―β€˜π‘‹)) β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) ∈ β„•)
3937, 38syl 17 . . 3 (πœ‘ β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) ∈ β„•)
4012, 39eqeltrrd 2835 . 2 (πœ‘ β†’ (β™―β€˜π‘†) ∈ β„•)
41 nnuz 12865 . . . . . . . . . . 11 β„• = (β„€β‰₯β€˜1)
426, 41eleqtrdi 2844 . . . . . . . . . 10 (πœ‘ β†’ (𝑃↑𝑁) ∈ (β„€β‰₯β€˜1))
43 elfz5 13493 . . . . . . . . . 10 (((𝑃↑𝑁) ∈ (β„€β‰₯β€˜1) ∧ (β™―β€˜π‘‹) ∈ β„€) β†’ ((𝑃↑𝑁) ∈ (1...(β™―β€˜π‘‹)) ↔ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
4442, 34, 43syl2anc 585 . . . . . . . . 9 (πœ‘ β†’ ((𝑃↑𝑁) ∈ (1...(β™―β€˜π‘‹)) ↔ (𝑃↑𝑁) ≀ (β™―β€˜π‘‹)))
4530, 44mpbird 257 . . . . . . . 8 (πœ‘ β†’ (𝑃↑𝑁) ∈ (1...(β™―β€˜π‘‹)))
46 1zzd 12593 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ β„€)
47 fzsubel 13537 . . . . . . . . 9 (((1 ∈ β„€ ∧ (β™―β€˜π‘‹) ∈ β„€) ∧ ((𝑃↑𝑁) ∈ β„€ ∧ 1 ∈ β„€)) β†’ ((𝑃↑𝑁) ∈ (1...(β™―β€˜π‘‹)) ↔ ((𝑃↑𝑁) βˆ’ 1) ∈ ((1 βˆ’ 1)...((β™―β€˜π‘‹) βˆ’ 1))))
4846, 34, 7, 46, 47syl22anc 838 . . . . . . . 8 (πœ‘ β†’ ((𝑃↑𝑁) ∈ (1...(β™―β€˜π‘‹)) ↔ ((𝑃↑𝑁) βˆ’ 1) ∈ ((1 βˆ’ 1)...((β™―β€˜π‘‹) βˆ’ 1))))
4945, 48mpbid 231 . . . . . . 7 (πœ‘ β†’ ((𝑃↑𝑁) βˆ’ 1) ∈ ((1 βˆ’ 1)...((β™―β€˜π‘‹) βˆ’ 1)))
50 1m1e0 12284 . . . . . . . 8 (1 βˆ’ 1) = 0
5150oveq1i 7419 . . . . . . 7 ((1 βˆ’ 1)...((β™―β€˜π‘‹) βˆ’ 1)) = (0...((β™―β€˜π‘‹) βˆ’ 1))
5249, 51eleqtrdi 2844 . . . . . 6 (πœ‘ β†’ ((𝑃↑𝑁) βˆ’ 1) ∈ (0...((β™―β€˜π‘‹) βˆ’ 1)))
53 bcp1nk 14277 . . . . . 6 (((𝑃↑𝑁) βˆ’ 1) ∈ (0...((β™―β€˜π‘‹) βˆ’ 1)) β†’ ((((β™―β€˜π‘‹) βˆ’ 1) + 1)C(((𝑃↑𝑁) βˆ’ 1) + 1)) = ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((((β™―β€˜π‘‹) βˆ’ 1) + 1) / (((𝑃↑𝑁) βˆ’ 1) + 1))))
5452, 53syl 17 . . . . 5 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ 1) + 1)C(((𝑃↑𝑁) βˆ’ 1) + 1)) = ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((((β™―β€˜π‘‹) βˆ’ 1) + 1) / (((𝑃↑𝑁) βˆ’ 1) + 1))))
5523nn0cnd 12534 . . . . . . 7 (πœ‘ β†’ (β™―β€˜π‘‹) ∈ β„‚)
56 ax-1cn 11168 . . . . . . 7 1 ∈ β„‚
57 npcan 11469 . . . . . . 7 (((β™―β€˜π‘‹) ∈ β„‚ ∧ 1 ∈ β„‚) β†’ (((β™―β€˜π‘‹) βˆ’ 1) + 1) = (β™―β€˜π‘‹))
5855, 56, 57sylancl 587 . . . . . 6 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ 1) + 1) = (β™―β€˜π‘‹))
596nncnd 12228 . . . . . . 7 (πœ‘ β†’ (𝑃↑𝑁) ∈ β„‚)
60 npcan 11469 . . . . . . 7 (((𝑃↑𝑁) ∈ β„‚ ∧ 1 ∈ β„‚) β†’ (((𝑃↑𝑁) βˆ’ 1) + 1) = (𝑃↑𝑁))
6159, 56, 60sylancl 587 . . . . . 6 (πœ‘ β†’ (((𝑃↑𝑁) βˆ’ 1) + 1) = (𝑃↑𝑁))
6258, 61oveq12d 7427 . . . . 5 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ 1) + 1)C(((𝑃↑𝑁) βˆ’ 1) + 1)) = ((β™―β€˜π‘‹)C(𝑃↑𝑁)))
6358, 61oveq12d 7427 . . . . . 6 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ 1) + 1) / (((𝑃↑𝑁) βˆ’ 1) + 1)) = ((β™―β€˜π‘‹) / (𝑃↑𝑁)))
6463oveq2d 7425 . . . . 5 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((((β™―β€˜π‘‹) βˆ’ 1) + 1) / (((𝑃↑𝑁) βˆ’ 1) + 1))) = ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁))))
6554, 62, 643eqtr3d 2781 . . . 4 (πœ‘ β†’ ((β™―β€˜π‘‹)C(𝑃↑𝑁)) = ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁))))
6665oveq2d 7425 . . 3 (πœ‘ β†’ (𝑃 pCnt ((β™―β€˜π‘‹)C(𝑃↑𝑁))) = (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁)))))
6712oveq2d 7425 . . 3 (πœ‘ β†’ (𝑃 pCnt ((β™―β€˜π‘‹)C(𝑃↑𝑁))) = (𝑃 pCnt (β™―β€˜π‘†)))
68 bccl2 14283 . . . . . . 7 (((𝑃↑𝑁) βˆ’ 1) ∈ (0...((β™―β€˜π‘‹) βˆ’ 1)) β†’ (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) ∈ β„•)
6952, 68syl 17 . . . . . 6 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) ∈ β„•)
7069nnzd 12585 . . . . 5 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) ∈ β„€)
7169nnne0d 12262 . . . . 5 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) β‰  0)
726nnne0d 12262 . . . . . . 7 (πœ‘ β†’ (𝑃↑𝑁) β‰  0)
73 dvdsval2 16200 . . . . . . 7 (((𝑃↑𝑁) ∈ β„€ ∧ (𝑃↑𝑁) β‰  0 ∧ (β™―β€˜π‘‹) ∈ β„€) β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) ↔ ((β™―β€˜π‘‹) / (𝑃↑𝑁)) ∈ β„€))
747, 72, 34, 73syl3anc 1372 . . . . . 6 (πœ‘ β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) ↔ ((β™―β€˜π‘‹) / (𝑃↑𝑁)) ∈ β„€))
7513, 74mpbid 231 . . . . 5 (πœ‘ β†’ ((β™―β€˜π‘‹) / (𝑃↑𝑁)) ∈ β„€)
7627nnne0d 12262 . . . . . 6 (πœ‘ β†’ (β™―β€˜π‘‹) β‰  0)
7755, 59, 76, 72divne0d 12006 . . . . 5 (πœ‘ β†’ ((β™―β€˜π‘‹) / (𝑃↑𝑁)) β‰  0)
78 pcmul 16784 . . . . 5 ((𝑃 ∈ β„™ ∧ ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) ∈ β„€ ∧ (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) β‰  0) ∧ (((β™―β€˜π‘‹) / (𝑃↑𝑁)) ∈ β„€ ∧ ((β™―β€˜π‘‹) / (𝑃↑𝑁)) β‰  0)) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁)))) = ((𝑃 pCnt (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1))) + (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁)))))
792, 70, 71, 75, 77, 78syl122anc 1380 . . . 4 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁)))) = ((𝑃 pCnt (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1))) + (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁)))))
80 1cnd 11209 . . . . . . . . 9 (πœ‘ β†’ 1 ∈ β„‚)
8155, 59, 80npncand 11595 . . . . . . . 8 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1)) = ((β™―β€˜π‘‹) βˆ’ 1))
8281oveq1d 7424 . . . . . . 7 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1)) = (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)))
8382oveq2d 7425 . . . . . 6 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = (𝑃 pCnt (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1))))
846nnred 12227 . . . . . . . 8 (πœ‘ β†’ (𝑃↑𝑁) ∈ ℝ)
8584ltm1d 12146 . . . . . . 7 (πœ‘ β†’ ((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁))
86 nnm1nn0 12513 . . . . . . . . 9 ((𝑃↑𝑁) ∈ β„• β†’ ((𝑃↑𝑁) βˆ’ 1) ∈ β„•0)
876, 86syl 17 . . . . . . . 8 (πœ‘ β†’ ((𝑃↑𝑁) βˆ’ 1) ∈ β„•0)
88 breq1 5152 . . . . . . . . . . 11 (π‘₯ = 0 β†’ (π‘₯ < (𝑃↑𝑁) ↔ 0 < (𝑃↑𝑁)))
89 bcxmaslem1 15780 . . . . . . . . . . . . 13 (π‘₯ = 0 β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯) = ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0))
9089oveq2d 7425 . . . . . . . . . . . 12 (π‘₯ = 0 β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)))
9190eqeq1d 2735 . . . . . . . . . . 11 (π‘₯ = 0 β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0 ↔ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = 0))
9288, 91imbi12d 345 . . . . . . . . . 10 (π‘₯ = 0 β†’ ((π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0) ↔ (0 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = 0)))
9392imbi2d 341 . . . . . . . . 9 (π‘₯ = 0 β†’ ((πœ‘ β†’ (π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0)) ↔ (πœ‘ β†’ (0 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = 0))))
94 breq1 5152 . . . . . . . . . . 11 (π‘₯ = 𝑛 β†’ (π‘₯ < (𝑃↑𝑁) ↔ 𝑛 < (𝑃↑𝑁)))
95 bcxmaslem1 15780 . . . . . . . . . . . . 13 (π‘₯ = 𝑛 β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯) = ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛))
9695oveq2d 7425 . . . . . . . . . . . 12 (π‘₯ = 𝑛 β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)))
9796eqeq1d 2735 . . . . . . . . . . 11 (π‘₯ = 𝑛 β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0 ↔ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0))
9894, 97imbi12d 345 . . . . . . . . . 10 (π‘₯ = 𝑛 β†’ ((π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0) ↔ (𝑛 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0)))
9998imbi2d 341 . . . . . . . . 9 (π‘₯ = 𝑛 β†’ ((πœ‘ β†’ (π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0)) ↔ (πœ‘ β†’ (𝑛 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0))))
100 breq1 5152 . . . . . . . . . . 11 (π‘₯ = (𝑛 + 1) β†’ (π‘₯ < (𝑃↑𝑁) ↔ (𝑛 + 1) < (𝑃↑𝑁)))
101 bcxmaslem1 15780 . . . . . . . . . . . . 13 (π‘₯ = (𝑛 + 1) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯) = ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1)))
102101oveq2d 7425 . . . . . . . . . . . 12 (π‘₯ = (𝑛 + 1) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))))
103102eqeq1d 2735 . . . . . . . . . . 11 (π‘₯ = (𝑛 + 1) β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0 ↔ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))
104100, 103imbi12d 345 . . . . . . . . . 10 (π‘₯ = (𝑛 + 1) β†’ ((π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0) ↔ ((𝑛 + 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0)))
105104imbi2d 341 . . . . . . . . 9 (π‘₯ = (𝑛 + 1) β†’ ((πœ‘ β†’ (π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0)) ↔ (πœ‘ β†’ ((𝑛 + 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))))
106 breq1 5152 . . . . . . . . . . 11 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ (π‘₯ < (𝑃↑𝑁) ↔ ((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁)))
107 bcxmaslem1 15780 . . . . . . . . . . . . 13 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯) = ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1)))
108107oveq2d 7425 . . . . . . . . . . . 12 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))))
109108eqeq1d 2735 . . . . . . . . . . 11 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0 ↔ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0))
110106, 109imbi12d 345 . . . . . . . . . 10 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ ((π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0) ↔ (((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0)))
111110imbi2d 341 . . . . . . . . 9 (π‘₯ = ((𝑃↑𝑁) βˆ’ 1) β†’ ((πœ‘ β†’ (π‘₯ < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + π‘₯)Cπ‘₯)) = 0)) ↔ (πœ‘ β†’ (((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0))))
112 znn0sub 12609 . . . . . . . . . . . . . . . 16 (((𝑃↑𝑁) ∈ β„€ ∧ (β™―β€˜π‘‹) ∈ β„€) β†’ ((𝑃↑𝑁) ≀ (β™―β€˜π‘‹) ↔ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0))
1137, 34, 112syl2anc 585 . . . . . . . . . . . . . . 15 (πœ‘ β†’ ((𝑃↑𝑁) ≀ (β™―β€˜π‘‹) ↔ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0))
11430, 113mpbid 231 . . . . . . . . . . . . . 14 (πœ‘ β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0)
115 0nn0 12487 . . . . . . . . . . . . . 14 0 ∈ β„•0
116 nn0addcl 12507 . . . . . . . . . . . . . 14 ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0 ∧ 0 ∈ β„•0) β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0) ∈ β„•0)
117114, 115, 116sylancl 587 . . . . . . . . . . . . 13 (πœ‘ β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0) ∈ β„•0)
118 bcn0 14270 . . . . . . . . . . . . 13 ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0) ∈ β„•0 β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0) = 1)
119117, 118syl 17 . . . . . . . . . . . 12 (πœ‘ β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0) = 1)
120119oveq2d 7425 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = (𝑃 pCnt 1))
121 pc1 16788 . . . . . . . . . . . 12 (𝑃 ∈ β„™ β†’ (𝑃 pCnt 1) = 0)
1222, 121syl 17 . . . . . . . . . . 11 (πœ‘ β†’ (𝑃 pCnt 1) = 0)
123120, 122eqtrd 2773 . . . . . . . . . 10 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = 0)
124123a1d 25 . . . . . . . . 9 (πœ‘ β†’ (0 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 0)C0)) = 0))
125 nn0re 12481 . . . . . . . . . . . . . 14 (𝑛 ∈ β„•0 β†’ 𝑛 ∈ ℝ)
126125ad2antrl 727 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ∈ ℝ)
127 nn0p1nn 12511 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„•0 β†’ (𝑛 + 1) ∈ β„•)
128127ad2antrl 727 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) ∈ β„•)
129128nnred 12227 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) ∈ ℝ)
1306adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃↑𝑁) ∈ β„•)
131130nnred 12227 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃↑𝑁) ∈ ℝ)
132126ltp1d 12144 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 < (𝑛 + 1))
133 simprr 772 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) < (𝑃↑𝑁))
134126, 129, 131, 132, 133lttrd 11375 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 < (𝑃↑𝑁))
135134expr 458 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 + 1) < (𝑃↑𝑁) β†’ 𝑛 < (𝑃↑𝑁)))
136135imim1d 82 . . . . . . . . . 10 ((πœ‘ ∧ 𝑛 ∈ β„•0) β†’ ((𝑛 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0) β†’ ((𝑛 + 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0)))
137 oveq1 7416 . . . . . . . . . . 11 ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0 β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
138114adantr 482 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0)
139138nn0cnd 12534 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„‚)
140 nn0cn 12482 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ β„•0 β†’ 𝑛 ∈ β„‚)
141140ad2antrl 727 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ∈ β„‚)
142 1cnd 11209 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 1 ∈ β„‚)
143139, 141, 142addassd 11236 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) = (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1)))
144143oveq1d 7424 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1)))
145 nn0addge2 12519 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℝ ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0) β†’ 𝑛 ≀ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛))
146126, 138, 145syl2anc 585 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ≀ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛))
147 simprl 770 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ∈ β„•0)
148147, 32eleqtrdi 2844 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ∈ (β„€β‰₯β€˜0))
149138, 147nn0addcld 12536 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) ∈ β„•0)
150149nn0zd 12584 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) ∈ β„€)
151 elfz5 13493 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (β„€β‰₯β€˜0) ∧ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) ∈ β„€) β†’ (𝑛 ∈ (0...(((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)) ↔ 𝑛 ≀ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)))
152148, 150, 151syl2anc 585 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 ∈ (0...(((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)) ↔ 𝑛 ≀ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)))
153146, 152mpbird 257 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑛 ∈ (0...(((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)))
154 bcp1nk 14277 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
155153, 154syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)C(𝑛 + 1)) = (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
156144, 155eqtr3d 2775 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1)) = (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))))
157156oveq2d 7425 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
1582adantr 482 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑃 ∈ β„™)
159 bccl2 14283 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„•)
160153, 159syl 17 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„•)
161 nnq 12946 . . . . . . . . . . . . . . 15 (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„• β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„š)
162160, 161syl 17 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„š)
163160nnne0d 12262 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) β‰  0)
164150peano2zd 12669 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„€)
165 znq 12936 . . . . . . . . . . . . . . 15 ((((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„€ ∧ (𝑛 + 1) ∈ β„•) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ β„š)
166164, 128, 165syl2anc 585 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ β„š)
167 nn0p1nn 12511 . . . . . . . . . . . . . . . . 17 ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) ∈ β„•0 β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„•)
168149, 167syl 17 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„•)
169 nnrp 12985 . . . . . . . . . . . . . . . . 17 (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„• β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ ℝ+)
170 nnrp 12985 . . . . . . . . . . . . . . . . 17 ((𝑛 + 1) ∈ β„• β†’ (𝑛 + 1) ∈ ℝ+)
171 rpdivcl 12999 . . . . . . . . . . . . . . . . 17 ((((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ ℝ+ ∧ (𝑛 + 1) ∈ ℝ+) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
172169, 170, 171syl2an 597 . . . . . . . . . . . . . . . 16 ((((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„• ∧ (𝑛 + 1) ∈ β„•) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
173168, 128, 172syl2anc 585 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ ℝ+)
174173rpne0d 13021 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) β‰  0)
175 pcqmul 16786 . . . . . . . . . . . . . 14 ((𝑃 ∈ β„™ ∧ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) ∈ β„š ∧ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) β‰  0) ∧ ((((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) ∈ β„š ∧ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)) β‰  0)) β†’ (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
176158, 162, 163, 166, 174, 175syl122anc 1380 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛) Β· (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
177157, 176eqtrd 2773 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
178168nnne0d 12262 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) β‰  0)
179 pcdiv 16785 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ β„™ ∧ (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) ∈ β„€ ∧ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) β‰  0) ∧ (𝑛 + 1) ∈ β„•) β†’ (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) βˆ’ (𝑃 pCnt (𝑛 + 1))))
180158, 164, 178, 128, 179syl121anc 1376 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) βˆ’ (𝑃 pCnt (𝑛 + 1))))
181128nncnd 12228 . . . . . . . . . . . . . . . . . . . 20 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) ∈ β„‚)
182139, 181, 143comraddd 11428 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) = ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
183182oveq2d 7425 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))))
184 simpr 486 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0)
185184oveq2d 7425 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0) β†’ ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))) = ((𝑛 + 1) + 0))
186181addridd 11414 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑛 + 1) + 0) = (𝑛 + 1))
187186adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0) β†’ ((𝑛 + 1) + 0) = (𝑛 + 1))
188185, 187eqtr2d 2774 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0) β†’ (𝑛 + 1) = ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
189188oveq2d 7425 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0) β†’ (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))))
1902ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ 𝑃 ∈ β„™)
191 nnq 12946 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 + 1) ∈ β„• β†’ (𝑛 + 1) ∈ β„š)
192128, 191syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) ∈ β„š)
193192adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑛 + 1) ∈ β„š)
194138nn0zd 12584 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„€)
195 zq 12938 . . . . . . . . . . . . . . . . . . . . . 22 (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„€ β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„š)
196194, 195syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„š)
197196adantr 482 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„š)
198158, 128pccld 16783 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (𝑛 + 1)) ∈ β„•0)
199198nn0red 12533 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
200199adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
2015adantr 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑁 ∈ β„•0)
202201nn0red 12533 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 𝑁 ∈ ℝ)
203202adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ 𝑁 ∈ ℝ)
204 simpr 486 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0)
205204neneqd 2946 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ Β¬ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0)
206114ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0)
207 elnn0 12474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•0 ↔ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„• ∨ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0))
208206, 207sylib 217 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„• ∨ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0))
209208ord 863 . . . . . . . . . . . . . . . . . . . . . . . 24 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (Β¬ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„• β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) = 0))
210205, 209mt3d 148 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„•)
211190, 210pccld 16783 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))) ∈ β„•0)
212211nn0red 12533 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))) ∈ ℝ)
213128nnzd 12585 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑛 + 1) ∈ β„€)
214 pcdvdsb 16802 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃 ∈ β„™ ∧ (𝑛 + 1) ∈ β„€ ∧ 𝑁 ∈ β„•0) β†’ (𝑁 ≀ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑𝑁) βˆ₯ (𝑛 + 1)))
215158, 213, 201, 214syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑁 ≀ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑𝑁) βˆ₯ (𝑛 + 1)))
2167adantr 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃↑𝑁) ∈ β„€)
217 dvdsle 16253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃↑𝑁) ∈ β„€ ∧ (𝑛 + 1) ∈ β„•) β†’ ((𝑃↑𝑁) βˆ₯ (𝑛 + 1) β†’ (𝑃↑𝑁) ≀ (𝑛 + 1)))
218216, 128, 217syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑃↑𝑁) βˆ₯ (𝑛 + 1) β†’ (𝑃↑𝑁) ≀ (𝑛 + 1)))
219215, 218sylbid 239 . . . . . . . . . . . . . . . . . . . . . . . 24 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑁 ≀ (𝑃 pCnt (𝑛 + 1)) β†’ (𝑃↑𝑁) ≀ (𝑛 + 1)))
220202, 199lenltd 11360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑁 ≀ (𝑃 pCnt (𝑛 + 1)) ↔ Β¬ (𝑃 pCnt (𝑛 + 1)) < 𝑁))
221131, 129lenltd 11360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑃↑𝑁) ≀ (𝑛 + 1) ↔ Β¬ (𝑛 + 1) < (𝑃↑𝑁)))
222219, 220, 2213imtr3d 293 . . . . . . . . . . . . . . . . . . . . . . 23 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (Β¬ (𝑃 pCnt (𝑛 + 1)) < 𝑁 β†’ Β¬ (𝑛 + 1) < (𝑃↑𝑁)))
223133, 222mt4d 117 . . . . . . . . . . . . . . . . . . . . . 22 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (𝑛 + 1)) < 𝑁)
224223adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt (𝑛 + 1)) < 𝑁)
225 dvdssubr 16248 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃↑𝑁) ∈ β„€ ∧ (β™―β€˜π‘‹) ∈ β„€) β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) ↔ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
2267, 34, 225syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . . 24 (πœ‘ β†’ ((𝑃↑𝑁) βˆ₯ (β™―β€˜π‘‹) ↔ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
22713, 226mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (πœ‘ β†’ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))
228227ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))
229206nn0zd 12584 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„€)
2305ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ 𝑁 ∈ β„•0)
231 pcdvdsb 16802 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ β„™ ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) ∈ β„€ ∧ 𝑁 ∈ β„•0) β†’ (𝑁 ≀ (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))) ↔ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
232190, 229, 230, 231syl3anc 1372 . . . . . . . . . . . . . . . . . . . . . 22 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑁 ≀ (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))) ↔ (𝑃↑𝑁) βˆ₯ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
233228, 232mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ 𝑁 ≀ (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
234200, 203, 212, 224, 233ltletrd 11374 . . . . . . . . . . . . . . . . . . . 20 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt (𝑛 + 1)) < (𝑃 pCnt ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁))))
235190, 193, 197, 234pcadd2 16823 . . . . . . . . . . . . . . . . . . 19 (((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) ∧ ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) β‰  0) β†’ (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))))
236189, 235pm2.61dane 3030 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (𝑛 + 1)) = (𝑃 pCnt ((𝑛 + 1) + ((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)))))
237183, 236eqtr4d 2776 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) = (𝑃 pCnt (𝑛 + 1)))
238198nn0cnd 12534 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (𝑛 + 1)) ∈ β„‚)
239237, 238eqeltrd 2834 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) ∈ β„‚)
240239, 237subeq0bd 11640 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1)) βˆ’ (𝑃 pCnt (𝑛 + 1))) = 0)
241180, 240eqtrd 2773 . . . . . . . . . . . . . 14 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))) = 0)
242241oveq2d 7425 . . . . . . . . . . . . 13 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ (0 + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + 0))
243 00id 11389 . . . . . . . . . . . . 13 (0 + 0) = 0
244242, 243eqtr2di 2790 . . . . . . . . . . . 12 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ 0 = (0 + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))))
245177, 244eqeq12d 2749 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0 ↔ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1)))) = (0 + (𝑃 pCnt (((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛) + 1) / (𝑛 + 1))))))
246137, 245imbitrrid 245 . . . . . . . . . 10 ((πœ‘ ∧ (𝑛 ∈ β„•0 ∧ (𝑛 + 1) < (𝑃↑𝑁))) β†’ ((𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0 β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))
247136, 246animpimp2impd 845 . . . . . . . . 9 (𝑛 ∈ β„•0 β†’ ((πœ‘ β†’ (𝑛 < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + 𝑛)C𝑛)) = 0)) β†’ (πœ‘ β†’ ((𝑛 + 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + (𝑛 + 1))C(𝑛 + 1))) = 0))))
24893, 99, 105, 111, 124, 247nn0ind 12657 . . . . . . . 8 (((𝑃↑𝑁) βˆ’ 1) ∈ β„•0 β†’ (πœ‘ β†’ (((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0)))
24987, 248mpcom 38 . . . . . . 7 (πœ‘ β†’ (((𝑃↑𝑁) βˆ’ 1) < (𝑃↑𝑁) β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0))
25085, 249mpd 15 . . . . . 6 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ (𝑃↑𝑁)) + ((𝑃↑𝑁) βˆ’ 1))C((𝑃↑𝑁) βˆ’ 1))) = 0)
25183, 250eqtr3d 2775 . . . . 5 (πœ‘ β†’ (𝑃 pCnt (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1))) = 0)
252 pcdiv 16785 . . . . . . 7 ((𝑃 ∈ β„™ ∧ ((β™―β€˜π‘‹) ∈ β„€ ∧ (β™―β€˜π‘‹) β‰  0) ∧ (𝑃↑𝑁) ∈ β„•) β†’ (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁))) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ (𝑃 pCnt (𝑃↑𝑁))))
2532, 34, 76, 6, 252syl121anc 1376 . . . . . 6 (πœ‘ β†’ (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁))) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ (𝑃 pCnt (𝑃↑𝑁))))
2545nn0zd 12584 . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ β„€)
255 pcid 16806 . . . . . . . 8 ((𝑃 ∈ β„™ ∧ 𝑁 ∈ β„€) β†’ (𝑃 pCnt (𝑃↑𝑁)) = 𝑁)
2562, 254, 255syl2anc 585 . . . . . . 7 (πœ‘ β†’ (𝑃 pCnt (𝑃↑𝑁)) = 𝑁)
257256oveq2d 7425 . . . . . 6 (πœ‘ β†’ ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ (𝑃 pCnt (𝑃↑𝑁))) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁))
258253, 257eqtrd 2773 . . . . 5 (πœ‘ β†’ (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁))) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁))
259251, 258oveq12d 7427 . . . 4 (πœ‘ β†’ ((𝑃 pCnt (((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1))) + (𝑃 pCnt ((β™―β€˜π‘‹) / (𝑃↑𝑁)))) = (0 + ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁)))
2602, 27pccld 16783 . . . . . . . 8 (πœ‘ β†’ (𝑃 pCnt (β™―β€˜π‘‹)) ∈ β„•0)
261260nn0zd 12584 . . . . . . 7 (πœ‘ β†’ (𝑃 pCnt (β™―β€˜π‘‹)) ∈ β„€)
262261, 254zsubcld 12671 . . . . . 6 (πœ‘ β†’ ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁) ∈ β„€)
263262zcnd 12667 . . . . 5 (πœ‘ β†’ ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁) ∈ β„‚)
264263addlidd 11415 . . . 4 (πœ‘ β†’ (0 + ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁)) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁))
26579, 259, 2643eqtrd 2777 . . 3 (πœ‘ β†’ (𝑃 pCnt ((((β™―β€˜π‘‹) βˆ’ 1)C((𝑃↑𝑁) βˆ’ 1)) Β· ((β™―β€˜π‘‹) / (𝑃↑𝑁)))) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁))
26666, 67, 2653eqtr3d 2781 . 2 (πœ‘ β†’ (𝑃 pCnt (β™―β€˜π‘†)) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁))
26740, 266jca 513 1 (πœ‘ β†’ ((β™―β€˜π‘†) ∈ β„• ∧ (𝑃 pCnt (β™―β€˜π‘†)) = ((𝑃 pCnt (β™―β€˜π‘‹)) βˆ’ 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  {crab 3433  βˆ…c0 4323  π’« cpw 4603   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7409  Fincfn 8939  β„‚cc 11108  β„cr 11109  0cc0 11110  1c1 11111   + caddc 11113   Β· cmul 11115   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444   / cdiv 11871  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  β„€β‰₯cuz 12822  β„šcq 12932  β„+crp 12974  ...cfz 13484  β†‘cexp 14027  Ccbc 14262  β™―chash 14290   βˆ₯ cdvds 16197  β„™cprime 16608   pCnt cpc 16769  Basecbs 17144  +gcplusg 17197  Grpcgrp 18819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-fz 13485  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-gcd 16436  df-prm 16609  df-pc 16770  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822
This theorem is referenced by:  sylow1lem3  19468
  Copyright terms: Public domain W3C validator