Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 24682
 Description: Lemma for mdegmulle2 24683. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2801 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 20685 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))))
98fveq1d 6651 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
109adantr 484 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
11 breq2 5037 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒r𝑐𝑒r𝑥))
1211rabbidv 3430 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒r𝑐} = {𝑒𝐴𝑒r𝑥})
13 fvoveq1 7162 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐f𝑑)) = (𝐺‘(𝑥f𝑑)))
1413oveq2d 7155 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))
1512, 14mpteq12dv 5118 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))))
1615oveq2d 7155 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
17 eqid 2801 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))
18 ovex 7172 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) ∈ V
1916, 17, 18fvmpt 6749 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
2019ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2801 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3626 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒r𝑥} → 𝑑𝐴)
2625adantl 485 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑𝐴)
2726adantrr 716 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 24671 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 11893 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 10678 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3927 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sseldi 3916 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ*)
37 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼𝑉)
385, 23tdeglem1 24662 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉𝐻:𝐴⟶ℕ0)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻:𝐴⟶ℕ0)
4039ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐻:𝐴⟶ℕ0)
4140, 26ffvelrnd 6833 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℕ0)
4233, 41sseldi 3916 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ*)
4330, 36, 423jca 1125 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4443adantrr 716 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
45 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4645ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ≤ 𝐽)
4746anim1i 617 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4847anasss 470 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
49 xrlelttr 12541 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
5044, 48, 49sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
5121, 1, 2, 22, 5, 23, 24, 27, 50mdeglt 24669 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5251oveq1d 7154 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))))
53 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5453ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑅 ∈ Ring)
55 eqid 2801 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
561, 55, 2, 5, 7mplelf 20674 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5756ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
58 ssrab2 4010 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒r𝑥} ⊆ 𝐴
5937ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐼𝑉)
60 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑥𝐴)
61 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑 ∈ {𝑒𝐴𝑒r𝑥})
62 eqid 2801 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒r𝑥} = {𝑒𝐴𝑒r𝑥}
635, 62psrbagconcl 20614 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6459, 60, 61, 63syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6558, 64sseldi 3916 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ 𝐴)
6657, 65ffvelrnd 6833 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅))
6755, 3, 22ringlz 19336 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6854, 66, 67syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6968adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
7052, 69eqtrd 2836 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
7170anassrs 471 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
727ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → 𝐺𝐵)
7365adantrr 716 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝑥f𝑑) ∈ 𝐴)
7421, 1, 2mdegxrcl 24671 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
757, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7675ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ∈ ℝ*)
77 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7833, 77sseldi 3916 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7978ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ*)
8040, 65ffvelrnd 6833 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℕ0)
8133, 80sseldi 3916 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ*)
8276, 79, 813jca 1125 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
8382adantrr 716 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
84 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8584ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ≤ 𝐾)
8685anim1i 617 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
8786anasss 470 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
88 xrlelttr 12541 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑))))
8983, 87, 88sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑)))
9021, 1, 2, 22, 5, 23, 72, 73, 89mdeglt 24669 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐺‘(𝑥f𝑑)) = (0g𝑅))
9190oveq2d 7155 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
921, 55, 2, 5, 6mplelf 20674 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
9392ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9493, 26ffvelrnd 6833 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9555, 3, 22ringrz 19337 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9654, 94, 95syl2anc 587 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9796adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9891, 97eqtrd 2836 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
9998anassrs 471 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
100 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
10141nn0red 11948 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ)
10280nn0red 11948 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ)
10334ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℕ0)
104103nn0red 11948 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ)
10577ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℕ0)
106105nn0red 11948 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ)
107 le2add 11115 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
108101, 102, 104, 106, 107syl22anc 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
1095, 23tdeglem3 24663 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑑𝐴 ∧ (𝑥f𝑑) ∈ 𝐴) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
11059, 26, 65, 109syl3anc 1368 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
1115psrbagf 20606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑑𝐴) → 𝑑:𝐼⟶ℕ0)
1121113adant3 1129 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
113112ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
114113nn0cnd 11949 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1155psrbagf 20606 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
1161153adant2 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
117116ffvelrnda 6832 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
118117nn0cnd 11949 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
119114, 118pncan3d 10993 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
120119mpteq2dva 5128 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
121 simp1 1133 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
122 fvexd 6664 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
123 ovexd 7174 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
124112feqmptd 6712 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
125 fvexd 6664 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
126116feqmptd 6712 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
127121, 125, 122, 126, 124offval2 7410 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥f𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
128121, 122, 123, 124, 127offval2 7410 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
129120, 128, 1263eqtr4d 2846 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = 𝑥)
13059, 26, 60, 129syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑑f + (𝑥f𝑑)) = 𝑥)
131130fveq2d 6653 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = (𝐻𝑥))
132110, 131eqtr3d 2838 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) = (𝐻𝑥))
133132breq1d 5043 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
134108, 133sylibd 242 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
135101, 104lenltd 10779 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
136102, 106lenltd 10779 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻‘(𝑥f𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
137135, 136anbi12d 633 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑)))))
138 ioran 981 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
139137, 138syl6bbr 292 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑)))))
14040, 60ffvelrnd 6833 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℕ0)
141140nn0red 11948 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℝ)
14234, 77nn0addcld 11951 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
143142ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
144143nn0red 11948 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
145141, 144lenltd 10779 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
146134, 139, 1453imtr3d 296 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
147100, 146mt4d 117 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))))
14871, 99, 147mpjaodan 956 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
149148mpteq2dva 5128 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅)))
150149oveq2d 7155 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))))
151 ringmnd 19303 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15253, 151syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
153152adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
154 ovex 7172 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1555, 154rab2ex 5205 . . . . . . 7 {𝑒𝐴𝑒r𝑥} ∈ V
15622gsumz 17995 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒r𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
157153, 155, 156sylancl 589 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
158150, 157eqtrd 2836 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (0g𝑅))
15910, 20, 1583eqtrd 2840 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
160159expr 460 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
161160ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1621mplring 20694 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
16337, 53, 162syl2anc 587 . . . 4 (𝜑𝑌 ∈ Ring)
1642, 4ringcl 19310 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
165163, 6, 7, 164syl3anc 1368 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16633, 142sseldi 3916 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16721, 1, 2, 22, 5, 23mdegleb 24668 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
168165, 166, 167syl2anc 587 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
169161, 168mpbird 260 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∀wral 3109  {crab 3113  Vcvv 3444   class class class wbr 5033   ↦ cmpt 5113  ◡ccnv 5522   “ cima 5526  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139   ∘f cof 7391   ∘r cofr 7392   ↑m cmap 8393  Fincfn 8496  ℝcr 10529   + caddc 10533  ℝ*cxr 10667   < clt 10668   ≤ cle 10669   − cmin 10863  ℕcn 11629  ℕ0cn0 11889  Basecbs 16478  .rcmulr 16561  0gc0g 16708   Σg cgsu 16709  Mndcmnd 17906  Ringcrg 19293  ℂfldccnfld 20094   mPoly cmpl 20594   mDeg cmdg 24657 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608  ax-addf 10609  ax-mulf 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-ofr 7394  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-er 8276  df-map 8395  df-pm 8396  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-0g 16710  df-gsum 16711  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-cnfld 20095  df-psr 20597  df-mpl 20599  df-mdeg 24659 This theorem is referenced by:  mdegmulle2  24683
 Copyright terms: Public domain W3C validator