MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 24058
Description: Lemma for mdegmulle2 24059. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2813 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 19655 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))))
98fveq1d 6413 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
109adantr 468 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
11 breq2 4855 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒𝑟𝑐𝑒𝑟𝑥))
1211rabbidv 3386 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒𝑟𝑐} = {𝑒𝐴𝑒𝑟𝑥})
13 fvoveq1 6900 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐𝑓𝑑)) = (𝐺‘(𝑥𝑓𝑑)))
1413oveq2d 6893 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
1512, 14mpteq12dv 4934 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))))
1615oveq2d 6893 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
17 eqid 2813 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))
18 ovex 6909 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) ∈ V
1916, 17, 18fvmpt 6506 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
2019ad2antrl 710 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2813 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3561 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} → 𝑑𝐴)
2625adantl 469 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑𝐴)
2726adantrr 699 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 24047 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 11566 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 10371 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3814 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sseldi 3803 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ*)
37 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼𝑉)
385, 23tdeglem1 24038 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉𝐻:𝐴⟶ℕ0)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻:𝐴⟶ℕ0)
4039ad2antrr 708 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐻:𝐴⟶ℕ0)
4140, 26ffvelrnd 6585 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℕ0)
4233, 41sseldi 3803 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ*)
4330, 36, 423jca 1151 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4443adantrr 699 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
45 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4645ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ≤ 𝐽)
4746anim1i 604 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4847anasss 454 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
49 xrlelttr 12208 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
5044, 48, 49sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
5121, 1, 2, 22, 5, 23, 24, 27, 50mdeglt 24045 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5251oveq1d 6892 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
53 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5453ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑅 ∈ Ring)
55 eqid 2813 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
561, 55, 2, 5, 7mplelf 19645 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5756ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
58 ssrab2 3891 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒𝑟𝑥} ⊆ 𝐴
5937ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐼𝑉)
60 simplrl 786 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑥𝐴)
61 simpr 473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥})
62 eqid 2813 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒𝑟𝑥} = {𝑒𝐴𝑒𝑟𝑥}
635, 62psrbagconcl 19585 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6459, 60, 61, 63syl3anc 1483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6558, 64sseldi 3803 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ 𝐴)
6657, 65ffvelrnd 6585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅))
6755, 3, 22ringlz 18792 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
6854, 66, 67syl2anc 575 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
6968adantrr 699 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7052, 69eqtrd 2847 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7170anassrs 455 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
727ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → 𝐺𝐵)
7365adantrr 699 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝑥𝑓𝑑) ∈ 𝐴)
7421, 1, 2mdegxrcl 24047 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
757, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7675ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ∈ ℝ*)
77 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7833, 77sseldi 3803 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7978ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ*)
8040, 65ffvelrnd 6585 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℕ0)
8133, 80sseldi 3803 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*)
8276, 79, 813jca 1151 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
8382adantrr 699 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
84 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8584ad2antrr 708 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ≤ 𝐾)
8685anim1i 604 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
8786anasss 454 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
88 xrlelttr 12208 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑))))
8983, 87, 88sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑)))
9021, 1, 2, 22, 5, 23, 72, 73, 89mdeglt 24045 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐺‘(𝑥𝑓𝑑)) = (0g𝑅))
9190oveq2d 6893 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
921, 55, 2, 5, 6mplelf 19645 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
9392ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9493, 26ffvelrnd 6585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9555, 3, 22ringrz 18793 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9654, 94, 95syl2anc 575 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9796adantrr 699 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9891, 97eqtrd 2847 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
9998anassrs 455 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
100 simplrr 787 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
10141nn0red 11621 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ)
10280nn0red 11621 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ)
10334ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℕ0)
104103nn0red 11621 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ)
10577ad2antrr 708 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℕ0)
106105nn0red 11621 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ)
107 le2add 10798 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
108101, 102, 104, 106, 107syl22anc 858 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
1095, 23tdeglem3 24039 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑑𝐴 ∧ (𝑥𝑓𝑑) ∈ 𝐴) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
11059, 26, 65, 109syl3anc 1483 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
1115psrbagf 19577 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑑𝐴) → 𝑑:𝐼⟶ℕ0)
1121113adant3 1155 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
113112ffvelrnda 6584 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
114113nn0cnd 11622 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1155psrbagf 19577 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
1161153adant2 1154 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
117116ffvelrnda 6584 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
118117nn0cnd 11622 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
119114, 118pncan3d 10683 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
120119mpteq2dva 4945 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
121 simp1 1159 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
122 fvexd 6426 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
123 ovexd 6911 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
124112feqmptd 6473 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
125 fvexd 6426 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
126116feqmptd 6473 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
127121, 125, 122, 126, 124offval2 7147 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥𝑓𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
128121, 122, 123, 124, 127offval2 7147 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
129120, 128, 1263eqtr4d 2857 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
13059, 26, 60, 129syl3anc 1483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
131130fveq2d 6415 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = (𝐻𝑥))
132110, 131eqtr3d 2849 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) = (𝐻𝑥))
133132breq1d 4861 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
134108, 133sylibd 230 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
135101, 104lenltd 10471 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
136102, 106lenltd 10471 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
137135, 136anbi12d 618 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
138 ioran 997 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
139137, 138syl6bbr 280 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
14040, 60ffvelrnd 6585 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℕ0)
141140nn0red 11621 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℝ)
14234, 77nn0addcld 11624 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
143142ad2antrr 708 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
144143nn0red 11621 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
145141, 144lenltd 10471 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
146134, 139, 1453imtr3d 284 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
147100, 146mt4d 153 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
14871, 99, 147mpjaodan 972 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
149148mpteq2dva 4945 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅)))
150149oveq2d 6893 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))))
151 ringmnd 18761 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15253, 151syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
153152adantr 468 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
154 ovex 6909 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1555, 154rab2ex 5017 . . . . . . 7 {𝑒𝐴𝑒𝑟𝑥} ∈ V
15622gsumz 17582 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒𝑟𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
157153, 155, 156sylancl 576 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
158150, 157eqtrd 2847 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (0g𝑅))
15910, 20, 1583eqtrd 2851 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
160159expr 446 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
161160ralrimiva 3161 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1621mplring 19664 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
16337, 53, 162syl2anc 575 . . . 4 (𝜑𝑌 ∈ Ring)
1642, 4ringcl 18766 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
165163, 6, 7, 164syl3anc 1483 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16633, 142sseldi 3803 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16721, 1, 2, 22, 5, 23mdegleb 24044 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
168165, 166, 167syl2anc 575 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
169161, 168mpbird 248 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  w3a 1100   = wceq 1637  wcel 2157  wral 3103  {crab 3107  Vcvv 3398   class class class wbr 4851  cmpt 4930  ccnv 5317  cima 5321  wf 6100  cfv 6104  (class class class)co 6877  𝑓 cof 7128  𝑟 cofr 7129  𝑚 cmap 8095  Fincfn 8195  cr 10223   + caddc 10227  *cxr 10361   < clt 10362  cle 10363  cmin 10554  cn 11308  0cn0 11562  Basecbs 16071  .rcmulr 16157  0gc0g 16308   Σg cgsu 16309  Mndcmnd 17502  Ringcrg 18752   mPoly cmpl 19565  fldccnfld 19957   mDeg cmdg 24033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302  ax-addf 10303  ax-mulf 10304
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-pss 3792  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-tp 4382  df-op 4384  df-uni 4638  df-int 4677  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-tr 4954  df-id 5226  df-eprel 5231  df-po 5239  df-so 5240  df-fr 5277  df-se 5278  df-we 5279  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-pred 5900  df-ord 5946  df-on 5947  df-lim 5948  df-suc 5949  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-isom 6113  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-of 7130  df-ofr 7131  df-om 7299  df-1st 7401  df-2nd 7402  df-supp 7533  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-pm 8098  df-ixp 8149  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-fsupp 8518  df-sup 8590  df-oi 8657  df-card 9051  df-pnf 10364  df-mnf 10365  df-xr 10366  df-ltxr 10367  df-le 10368  df-sub 10556  df-neg 10557  df-nn 11309  df-2 11367  df-3 11368  df-4 11369  df-5 11370  df-6 11371  df-7 11372  df-8 11373  df-9 11374  df-n0 11563  df-z 11647  df-dec 11763  df-uz 11908  df-fz 12553  df-fzo 12693  df-seq 13028  df-hash 13341  df-struct 16073  df-ndx 16074  df-slot 16075  df-base 16077  df-sets 16078  df-ress 16079  df-plusg 16169  df-mulr 16170  df-starv 16171  df-sca 16172  df-vsca 16173  df-tset 16175  df-ple 16176  df-ds 16178  df-unif 16179  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-mulg 17749  df-subg 17796  df-ghm 17863  df-cntz 17954  df-cmn 18399  df-abl 18400  df-mgp 18695  df-ur 18707  df-ring 18754  df-cring 18755  df-subrg 18985  df-psr 19568  df-mpl 19570  df-cnfld 19958  df-mdeg 24035
This theorem is referenced by:  mdegmulle2  24059
  Copyright terms: Public domain W3C validator