| Step | Hyp | Ref
| Expression |
| 1 | | mdegaddle.y |
. . . . . . . 8
⊢ 𝑌 = (𝐼 mPoly 𝑅) |
| 2 | | mdegmulle2.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑌) |
| 3 | | eqid 2737 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 4 | | mdegmulle2.t |
. . . . . . . 8
⊢ · =
(.r‘𝑌) |
| 5 | | mdegmullem.a |
. . . . . . . 8
⊢ 𝐴 = {𝑎 ∈ (ℕ0
↑m 𝐼)
∣ (◡𝑎 “ ℕ) ∈
Fin} |
| 6 | | mdegmulle2.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 7 | | mdegmulle2.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | mplmul 22031 |
. . . . . . 7
⊢ (𝜑 → (𝐹 · 𝐺) = (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))))) |
| 9 | 8 | fveq1d 6908 |
. . . . . 6
⊢ (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))))‘𝑥)) |
| 10 | 9 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))))‘𝑥)) |
| 11 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → (𝑒 ∘r ≤ 𝑐 ↔ 𝑒 ∘r ≤ 𝑥)) |
| 12 | 11 | rabbidv 3444 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} = {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) |
| 13 | | fvoveq1 7454 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑥 → (𝐺‘(𝑐 ∘f − 𝑑)) = (𝐺‘(𝑥 ∘f − 𝑑))) |
| 14 | 13 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑐 = 𝑥 → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))) = ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))) |
| 15 | 12, 14 | mpteq12dv 5233 |
. . . . . . . 8
⊢ (𝑐 = 𝑥 → (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑)))) = (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))))) |
| 16 | 15 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))))) |
| 17 | | eqid 2737 |
. . . . . . 7
⊢ (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑)))))) = (𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑)))))) |
| 18 | | ovex 7464 |
. . . . . . 7
⊢ (𝑅 Σg
(𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))))) ∈ V |
| 19 | 16, 17, 18 | fvmpt 7016 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))))) |
| 20 | 19 | ad2antrl 728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝑐 ∈ 𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑐} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑐 ∘f − 𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))))) |
| 21 | | mdegaddle.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (𝐼 mDeg 𝑅) |
| 22 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 23 | | mdegmullem.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = (𝑏 ∈ 𝐴 ↦ (ℂfld
Σg 𝑏)) |
| 24 | 6 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → 𝐹 ∈ 𝐵) |
| 25 | | elrabi 3687 |
. . . . . . . . . . . . . . 15
⊢ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} → 𝑑 ∈ 𝐴) |
| 26 | 25 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝑑 ∈ 𝐴) |
| 27 | 26 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → 𝑑 ∈ 𝐴) |
| 28 | 21, 1, 2 | mdegxrcl 26106 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ 𝐵 → (𝐷‘𝐹) ∈
ℝ*) |
| 29 | 6, 28 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℝ*) |
| 30 | 29 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐷‘𝐹) ∈
ℝ*) |
| 31 | | nn0ssre 12530 |
. . . . . . . . . . . . . . . . . . 19
⊢
ℕ0 ⊆ ℝ |
| 32 | | ressxr 11305 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℝ
⊆ ℝ* |
| 33 | 31, 32 | sstri 3993 |
. . . . . . . . . . . . . . . . . 18
⊢
ℕ0 ⊆ ℝ* |
| 34 | | mdegmulle2.j1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 35 | 33, 34 | sselid 3981 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ∈
ℝ*) |
| 36 | 35 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐽 ∈
ℝ*) |
| 37 | 5, 23 | tdeglem1 26097 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐻:𝐴⟶ℕ0 |
| 38 | 37 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐻:𝐴⟶ℕ0) |
| 39 | 38, 26 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘𝑑) ∈
ℕ0) |
| 40 | 33, 39 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘𝑑) ∈
ℝ*) |
| 41 | 30, 36, 40 | 3jca 1129 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈
ℝ*)) |
| 42 | 41 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈
ℝ*)) |
| 43 | | mdegmulle2.j2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐹) ≤ 𝐽) |
| 44 | 43 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐷‘𝐹) ≤ 𝐽) |
| 45 | 44 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) ∧ 𝐽 < (𝐻‘𝑑)) → ((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑))) |
| 46 | 45 | anasss 466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑))) |
| 47 | | xrlelttr 13198 |
. . . . . . . . . . . . . 14
⊢ (((𝐷‘𝐹) ∈ ℝ* ∧ 𝐽 ∈ ℝ*
∧ (𝐻‘𝑑) ∈ ℝ*)
→ (((𝐷‘𝐹) ≤ 𝐽 ∧ 𝐽 < (𝐻‘𝑑)) → (𝐷‘𝐹) < (𝐻‘𝑑))) |
| 48 | 42, 46, 47 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → (𝐷‘𝐹) < (𝐻‘𝑑)) |
| 49 | 21, 1, 2, 22, 5, 23, 24, 27, 48 | mdeglt 26104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → (𝐹‘𝑑) = (0g‘𝑅)) |
| 50 | 49 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) =
((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))) |
| 51 | | mdegaddle.r |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 52 | 51 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝑅 ∈ Ring) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 54 | 1, 53, 2, 5, 7 | mplelf 22018 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝐴⟶(Base‘𝑅)) |
| 55 | 54 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐺:𝐴⟶(Base‘𝑅)) |
| 56 | | ssrab2 4080 |
. . . . . . . . . . . . . . 15
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ⊆ 𝐴 |
| 57 | | simplrl 777 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝑥 ∈ 𝐴) |
| 58 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} = {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} |
| 59 | 5, 58 | psrbagconcl 21947 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑑) ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) |
| 60 | 57, 59 | sylancom 588 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑑) ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) |
| 61 | 56, 60 | sselid 3981 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝑥 ∘f − 𝑑) ∈ 𝐴) |
| 62 | 55, 61 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐺‘(𝑥 ∘f − 𝑑)) ∈ (Base‘𝑅)) |
| 63 | 53, 3, 22 | ringlz 20290 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥 ∘f − 𝑑)) ∈ (Base‘𝑅)) →
((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 64 | 52, 62, 63 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 65 | 64 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((0g‘𝑅)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 66 | 50, 65 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐽 < (𝐻‘𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 67 | 66 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) ∧ 𝐽 < (𝐻‘𝑑)) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 68 | 7 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → 𝐺 ∈ 𝐵) |
| 69 | 61 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → (𝑥 ∘f − 𝑑) ∈ 𝐴) |
| 70 | 21, 1, 2 | mdegxrcl 26106 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐺 ∈ 𝐵 → (𝐷‘𝐺) ∈
ℝ*) |
| 71 | 7, 70 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℝ*) |
| 72 | 71 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐷‘𝐺) ∈
ℝ*) |
| 73 | | mdegmulle2.k1 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 74 | 33, 73 | sselid 3981 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈
ℝ*) |
| 75 | 74 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐾 ∈
ℝ*) |
| 76 | 38, 61 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘(𝑥 ∘f − 𝑑)) ∈
ℕ0) |
| 77 | 33, 76 | sselid 3981 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘(𝑥 ∘f − 𝑑)) ∈
ℝ*) |
| 78 | 72, 75, 77 | 3jca 1129 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘f −
𝑑)) ∈
ℝ*)) |
| 79 | 78 | adantrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → ((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘f −
𝑑)) ∈
ℝ*)) |
| 80 | | mdegmulle2.k2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐷‘𝐺) ≤ 𝐾) |
| 81 | 80 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐷‘𝐺) ≤ 𝐾) |
| 82 | 81 | anim1i 615 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))) → ((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 83 | 82 | anasss 466 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → ((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 84 | | xrlelttr 13198 |
. . . . . . . . . . . . . 14
⊢ (((𝐷‘𝐺) ∈ ℝ* ∧ 𝐾 ∈ ℝ*
∧ (𝐻‘(𝑥 ∘f −
𝑑)) ∈
ℝ*) → (((𝐷‘𝐺) ≤ 𝐾 ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))) → (𝐷‘𝐺) < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 85 | 79, 83, 84 | sylc 65 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → (𝐷‘𝐺) < (𝐻‘(𝑥 ∘f − 𝑑))) |
| 86 | 21, 1, 2, 22, 5, 23, 68, 69, 85 | mdeglt 26104 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → (𝐺‘(𝑥 ∘f − 𝑑)) = (0g‘𝑅)) |
| 87 | 86 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅))) |
| 88 | 1, 53, 2, 5, 6 | mplelf 22018 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝐴⟶(Base‘𝑅)) |
| 89 | 88 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐹:𝐴⟶(Base‘𝑅)) |
| 90 | 89, 26 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐹‘𝑑) ∈ (Base‘𝑅)) |
| 91 | 53, 3, 22 | ringrz 20291 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝐹‘𝑑) ∈ (Base‘𝑅)) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 92 | 52, 90, 91 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 93 | 92 | adantrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) |
| 94 | 87, 93 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 95 | 94 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) ∧ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 96 | | simplrr 778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐽 + 𝐾) < (𝐻‘𝑥)) |
| 97 | 39 | nn0red 12588 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘𝑑) ∈ ℝ) |
| 98 | 76 | nn0red 12588 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘(𝑥 ∘f − 𝑑)) ∈
ℝ) |
| 99 | 34 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐽 ∈
ℕ0) |
| 100 | 99 | nn0red 12588 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐽 ∈ ℝ) |
| 101 | 73 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐾 ∈
ℕ0) |
| 102 | 101 | nn0red 12588 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐾 ∈ ℝ) |
| 103 | | le2add 11745 |
. . . . . . . . . . . . 13
⊢ ((((𝐻‘𝑑) ∈ ℝ ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) →
(((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑))) ≤ (𝐽 + 𝐾))) |
| 104 | 97, 98, 100, 102, 103 | syl22anc 839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑))) ≤ (𝐽 + 𝐾))) |
| 105 | 5, 23 | tdeglem3 26098 |
. . . . . . . . . . . . . . 15
⊢ ((𝑑 ∈ 𝐴 ∧ (𝑥 ∘f − 𝑑) ∈ 𝐴) → (𝐻‘(𝑑 ∘f + (𝑥 ∘f − 𝑑))) = ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 106 | 26, 61, 105 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘(𝑑 ∘f + (𝑥 ∘f − 𝑑))) = ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 107 | | mdegaddle.i |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 108 | 107 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → 𝐼 ∈ 𝑉) |
| 109 | 5 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑑 ∈ 𝐴 → 𝑑:𝐼⟶ℕ0) |
| 110 | 109 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑑:𝐼⟶ℕ0) |
| 111 | 110 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈
ℕ0) |
| 112 | 111 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈ ℂ) |
| 113 | 5 | psrbagf 21938 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 ∈ 𝐴 → 𝑥:𝐼⟶ℕ0) |
| 114 | 113 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥:𝐼⟶ℕ0) |
| 115 | 114 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈
ℕ0) |
| 116 | 115 | nn0cnd 12589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ ℂ) |
| 117 | 112, 116 | pncan3d 11623 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏))) = (𝑥‘𝑏)) |
| 118 | 117 | mpteq2dva 5242 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑏 ∈ 𝐼 ↦ ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏)))) = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 119 | | simp1 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝐼 ∈ 𝑉) |
| 120 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑑‘𝑏) ∈ V) |
| 121 | | ovexd 7466 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → ((𝑥‘𝑏) − (𝑑‘𝑏)) ∈ V) |
| 122 | 110 | feqmptd 6977 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑑 = (𝑏 ∈ 𝐼 ↦ (𝑑‘𝑏))) |
| 123 | | fvexd 6921 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑏 ∈ 𝐼) → (𝑥‘𝑏) ∈ V) |
| 124 | 114 | feqmptd 6977 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → 𝑥 = (𝑏 ∈ 𝐼 ↦ (𝑥‘𝑏))) |
| 125 | 119, 123,
120, 124, 122 | offval2 7717 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∘f − 𝑑) = (𝑏 ∈ 𝐼 ↦ ((𝑥‘𝑏) − (𝑑‘𝑏)))) |
| 126 | 119, 120,
121, 122, 125 | offval2 7717 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑑 ∘f + (𝑥 ∘f − 𝑑)) = (𝑏 ∈ 𝐼 ↦ ((𝑑‘𝑏) + ((𝑥‘𝑏) − (𝑑‘𝑏))))) |
| 127 | 118, 126,
124 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑑 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑑 ∘f + (𝑥 ∘f − 𝑑)) = 𝑥) |
| 128 | 108, 26, 57, 127 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝑑 ∘f + (𝑥 ∘f − 𝑑)) = 𝑥) |
| 129 | 128 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘(𝑑 ∘f + (𝑥 ∘f − 𝑑))) = (𝐻‘𝑥)) |
| 130 | 106, 129 | eqtr3d 2779 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑))) = (𝐻‘𝑥)) |
| 131 | 130 | breq1d 5153 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (((𝐻‘𝑑) + (𝐻‘(𝑥 ∘f − 𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻‘𝑥) ≤ (𝐽 + 𝐾))) |
| 132 | 104, 131 | sylibd 239 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾) → (𝐻‘𝑥) ≤ (𝐽 + 𝐾))) |
| 133 | 97, 100 | lenltd 11407 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐻‘𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻‘𝑑))) |
| 134 | 98, 102 | lenltd 11407 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 135 | 133, 134 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻‘𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))))) |
| 136 | | ioran 986 |
. . . . . . . . . . . 12
⊢ (¬
(𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))) ↔ (¬ 𝐽 < (𝐻‘𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 137 | 135, 136 | bitr4di 289 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (((𝐻‘𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥 ∘f − 𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))))) |
| 138 | 38, 57 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘𝑥) ∈
ℕ0) |
| 139 | 138 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐻‘𝑥) ∈ ℝ) |
| 140 | 34, 73 | nn0addcld 12591 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐽 + 𝐾) ∈
ℕ0) |
| 141 | 140 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐽 + 𝐾) ∈
ℕ0) |
| 142 | 141 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐽 + 𝐾) ∈ ℝ) |
| 143 | 139, 142 | lenltd 11407 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐻‘𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻‘𝑥))) |
| 144 | 132, 137,
143 | 3imtr3d 293 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (¬ (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻‘𝑥))) |
| 145 | 96, 144 | mt4d 117 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → (𝐽 < (𝐻‘𝑑) ∨ 𝐾 < (𝐻‘(𝑥 ∘f − 𝑑)))) |
| 146 | 67, 95, 145 | mpjaodan 961 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) ∧ 𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥}) → ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))) = (0g‘𝑅)) |
| 147 | 146 | mpteq2dva 5242 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑)))) = (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ (0g‘𝑅))) |
| 148 | 147 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ (0g‘𝑅)))) |
| 149 | | ringmnd 20240 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 150 | 51, 149 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 151 | 150 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → 𝑅 ∈ Mnd) |
| 152 | | ovex 7464 |
. . . . . . . 8
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 153 | 5, 152 | rab2ex 5342 |
. . . . . . 7
⊢ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∈ V |
| 154 | 22 | gsumz 18849 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 155 | 151, 153,
154 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ (0g‘𝑅))) = (0g‘𝑅)) |
| 156 | 148, 155 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒 ∈ 𝐴 ∣ 𝑒 ∘r ≤ 𝑥} ↦ ((𝐹‘𝑑)(.r‘𝑅)(𝐺‘(𝑥 ∘f − 𝑑))))) =
(0g‘𝑅)) |
| 157 | 10, 20, 156 | 3eqtrd 2781 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (𝐽 + 𝐾) < (𝐻‘𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)) |
| 158 | 157 | expr 456 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅))) |
| 159 | 158 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅))) |
| 160 | 1, 107, 51 | mplringd 22043 |
. . . 4
⊢ (𝜑 → 𝑌 ∈ Ring) |
| 161 | 2, 4 | ringcl 20247 |
. . . 4
⊢ ((𝑌 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹 · 𝐺) ∈ 𝐵) |
| 162 | 160, 6, 7, 161 | syl3anc 1373 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 163 | 33, 140 | sselid 3981 |
. . 3
⊢ (𝜑 → (𝐽 + 𝐾) ∈
ℝ*) |
| 164 | 21, 1, 2, 22, 5, 23 | mdegleb 26103 |
. . 3
⊢ (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)))) |
| 165 | 162, 163,
164 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥 ∈ 𝐴 ((𝐽 + 𝐾) < (𝐻‘𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g‘𝑅)))) |
| 166 | 159, 165 | mpbird 257 |
1
⊢ (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾)) |