MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 26033
Description: Lemma for mdegmulle2 26034. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2735 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 21969 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))))
98fveq1d 6877 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
11 breq2 5123 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒r𝑐𝑒r𝑥))
1211rabbidv 3423 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒r𝑐} = {𝑒𝐴𝑒r𝑥})
13 fvoveq1 7426 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐f𝑑)) = (𝐺‘(𝑥f𝑑)))
1413oveq2d 7419 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))
1512, 14mpteq12dv 5207 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))))
1615oveq2d 7419 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
17 eqid 2735 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))
18 ovex 7436 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) ∈ V
1916, 17, 18fvmpt 6985 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
2019ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2735 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3666 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒r𝑥} → 𝑑𝐴)
2625adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑𝐴)
2726adantrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 26022 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 12503 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 11277 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3968 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sselid 3956 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ*)
375, 23tdeglem1 26013 . . . . . . . . . . . . . . . . . . 19 𝐻:𝐴⟶ℕ0
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐻:𝐴⟶ℕ0)
3938, 26ffvelcdmd 7074 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℕ0)
4033, 39sselid 3956 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ*)
4130, 36, 403jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4241adantrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
43 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4443ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ≤ 𝐽)
4544anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4645anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
47 xrlelttr 13170 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
4842, 46, 47sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
4921, 1, 2, 22, 5, 23, 24, 27, 48mdeglt 26020 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5049oveq1d 7418 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))))
51 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5251ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑅 ∈ Ring)
53 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
541, 53, 2, 5, 7mplelf 21956 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
56 ssrab2 4055 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒r𝑥} ⊆ 𝐴
57 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑥𝐴)
58 eqid 2735 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒r𝑥} = {𝑒𝐴𝑒r𝑥}
595, 58psrbagconcl 21885 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6057, 59sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6156, 60sselid 3956 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ 𝐴)
6255, 61ffvelcdmd 7074 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅))
6353, 3, 22ringlz 20251 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6452, 62, 63syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6564adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6650, 65eqtrd 2770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6766anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
687ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → 𝐺𝐵)
6961adantrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝑥f𝑑) ∈ 𝐴)
7021, 1, 2mdegxrcl 26022 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
717, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7271ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ∈ ℝ*)
73 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7433, 73sselid 3956 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ*)
7638, 61ffvelcdmd 7074 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℕ0)
7733, 76sselid 3956 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ*)
7872, 75, 773jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
7978adantrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
80 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8180ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ≤ 𝐾)
8281anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
8382anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
84 xrlelttr 13170 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑))))
8579, 83, 84sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑)))
8621, 1, 2, 22, 5, 23, 68, 69, 85mdeglt 26020 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐺‘(𝑥f𝑑)) = (0g𝑅))
8786oveq2d 7419 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
881, 53, 2, 5, 6mplelf 21956 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
8988ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9089, 26ffvelcdmd 7074 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9153, 3, 22ringrz 20252 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9252, 90, 91syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9392adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9487, 93eqtrd 2770 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
9594anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
96 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
9739nn0red 12561 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ)
9876nn0red 12561 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ)
9934ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℕ0)
10099nn0red 12561 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ)
10173ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℕ0)
102101nn0red 12561 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ)
103 le2add 11717 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
10497, 98, 100, 102, 103syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
1055, 23tdeglem3 26014 . . . . . . . . . . . . . . 15 ((𝑑𝐴 ∧ (𝑥f𝑑) ∈ 𝐴) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
10626, 61, 105syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
107 mdegaddle.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
108107ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐼𝑉)
1095psrbagf 21876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑𝐴𝑑:𝐼⟶ℕ0)
1101093ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
111110ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
112111nn0cnd 12562 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1135psrbagf 21876 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝑥:𝐼⟶ℕ0)
1141133ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
115114ffvelcdmda 7073 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
116115nn0cnd 12562 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
117112, 116pncan3d 11595 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
118117mpteq2dva 5214 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
119 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
120 fvexd 6890 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
121 ovexd 7438 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
122110feqmptd 6946 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
123 fvexd 6890 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
124114feqmptd 6946 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
125119, 123, 120, 124, 122offval2 7689 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥f𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
126119, 120, 121, 122, 125offval2 7689 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
127118, 126, 1243eqtr4d 2780 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = 𝑥)
128108, 26, 57, 127syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑑f + (𝑥f𝑑)) = 𝑥)
129128fveq2d 6879 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = (𝐻𝑥))
130106, 129eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) = (𝐻𝑥))
131130breq1d 5129 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
132104, 131sylibd 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
13397, 100lenltd 11379 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
13498, 102lenltd 11379 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻‘(𝑥f𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
135133, 134anbi12d 632 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑)))))
136 ioran 985 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
137135, 136bitr4di 289 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑)))))
13838, 57ffvelcdmd 7074 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℕ0)
139138nn0red 12561 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℝ)
14034, 73nn0addcld 12564 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
141140ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
142141nn0red 12561 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
143139, 142lenltd 11379 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
144132, 137, 1433imtr3d 293 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
14596, 144mt4d 117 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))))
14667, 95, 145mpjaodan 960 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
147146mpteq2dva 5214 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅)))
148147oveq2d 7419 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))))
149 ringmnd 20201 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15051, 149syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
151150adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
152 ovex 7436 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1535, 152rab2ex 5312 . . . . . . 7 {𝑒𝐴𝑒r𝑥} ∈ V
15422gsumz 18812 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒r𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
155151, 153, 154sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
156148, 155eqtrd 2770 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (0g𝑅))
15710, 20, 1563eqtrd 2774 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
158157expr 456 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
159158ralrimiva 3132 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1601, 107, 51mplringd 21981 . . . 4 (𝜑𝑌 ∈ Ring)
1612, 4ringcl 20208 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
162160, 6, 7, 161syl3anc 1373 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16333, 140sselid 3956 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16421, 1, 2, 22, 5, 23mdegleb 26019 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
165162, 163, 164syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
166159, 165mpbird 257 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459   class class class wbr 5119  cmpt 5201  ccnv 5653  cima 5657  wf 6526  cfv 6530  (class class class)co 7403  f cof 7667  r cofr 7668  m cmap 8838  Fincfn 8957  cr 11126   + caddc 11130  *cxr 11266   < clt 11267  cle 11268  cmin 11464  cn 12238  0cn0 12499  Basecbs 17226  .rcmulr 17270  0gc0g 17451   Σg cgsu 17452  Mndcmnd 18710  Ringcrg 20191  fldccnfld 21313   mPoly cmpl 21864   mDeg cmdg 26008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-ring 20193  df-cring 20194  df-subrng 20504  df-subrg 20528  df-cnfld 21314  df-psr 21867  df-mpl 21869  df-mdeg 26010
This theorem is referenced by:  mdegmulle2  26034
  Copyright terms: Public domain W3C validator