MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 26011
Description: Lemma for mdegmulle2 26012. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2733 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 21949 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))))
98fveq1d 6830 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
11 breq2 5097 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒r𝑐𝑒r𝑥))
1211rabbidv 3403 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒r𝑐} = {𝑒𝐴𝑒r𝑥})
13 fvoveq1 7375 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐f𝑑)) = (𝐺‘(𝑥f𝑑)))
1413oveq2d 7368 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))
1512, 14mpteq12dv 5180 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))))
1615oveq2d 7368 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
17 eqid 2733 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))
18 ovex 7385 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) ∈ V
1916, 17, 18fvmpt 6935 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
2019ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2733 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3639 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒r𝑥} → 𝑑𝐴)
2625adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑𝐴)
2726adantrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 26000 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 12392 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 11163 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3940 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sselid 3928 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ*)
375, 23tdeglem1 25991 . . . . . . . . . . . . . . . . . . 19 𝐻:𝐴⟶ℕ0
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐻:𝐴⟶ℕ0)
3938, 26ffvelcdmd 7024 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℕ0)
4033, 39sselid 3928 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ*)
4130, 36, 403jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4241adantrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
43 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4443ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ≤ 𝐽)
4544anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4645anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
47 xrlelttr 13057 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
4842, 46, 47sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
4921, 1, 2, 22, 5, 23, 24, 27, 48mdeglt 25998 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5049oveq1d 7367 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))))
51 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5251ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑅 ∈ Ring)
53 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
541, 53, 2, 5, 7mplelf 21936 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5554ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
56 ssrab2 4029 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒r𝑥} ⊆ 𝐴
57 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑥𝐴)
58 eqid 2733 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒r𝑥} = {𝑒𝐴𝑒r𝑥}
595, 58psrbagconcl 21866 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6057, 59sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6156, 60sselid 3928 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ 𝐴)
6255, 61ffvelcdmd 7024 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅))
6353, 3, 22ringlz 20213 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6452, 62, 63syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6564adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6650, 65eqtrd 2768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6766anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
687ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → 𝐺𝐵)
6961adantrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝑥f𝑑) ∈ 𝐴)
7021, 1, 2mdegxrcl 26000 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
717, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7271ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ∈ ℝ*)
73 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7433, 73sselid 3928 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7574ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ*)
7638, 61ffvelcdmd 7024 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℕ0)
7733, 76sselid 3928 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ*)
7872, 75, 773jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
7978adantrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
80 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8180ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ≤ 𝐾)
8281anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
8382anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
84 xrlelttr 13057 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑))))
8579, 83, 84sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑)))
8621, 1, 2, 22, 5, 23, 68, 69, 85mdeglt 25998 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐺‘(𝑥f𝑑)) = (0g𝑅))
8786oveq2d 7368 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
881, 53, 2, 5, 6mplelf 21936 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
8988ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9089, 26ffvelcdmd 7024 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9153, 3, 22ringrz 20214 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9252, 90, 91syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9392adantrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9487, 93eqtrd 2768 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
9594anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
96 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
9739nn0red 12450 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ)
9876nn0red 12450 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ)
9934ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℕ0)
10099nn0red 12450 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ)
10173ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℕ0)
102101nn0red 12450 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ)
103 le2add 11606 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
10497, 98, 100, 102, 103syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
1055, 23tdeglem3 25992 . . . . . . . . . . . . . . 15 ((𝑑𝐴 ∧ (𝑥f𝑑) ∈ 𝐴) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
10626, 61, 105syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
107 mdegaddle.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
108107ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐼𝑉)
1095psrbagf 21857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑𝐴𝑑:𝐼⟶ℕ0)
1101093ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
111110ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
112111nn0cnd 12451 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1135psrbagf 21857 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝑥:𝐼⟶ℕ0)
1141133ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
115114ffvelcdmda 7023 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
116115nn0cnd 12451 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
117112, 116pncan3d 11482 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
118117mpteq2dva 5186 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
119 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
120 fvexd 6843 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
121 ovexd 7387 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
122110feqmptd 6896 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
123 fvexd 6843 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
124114feqmptd 6896 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
125119, 123, 120, 124, 122offval2 7636 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥f𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
126119, 120, 121, 122, 125offval2 7636 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
127118, 126, 1243eqtr4d 2778 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = 𝑥)
128108, 26, 57, 127syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑑f + (𝑥f𝑑)) = 𝑥)
129128fveq2d 6832 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = (𝐻𝑥))
130106, 129eqtr3d 2770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) = (𝐻𝑥))
131130breq1d 5103 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
132104, 131sylibd 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
13397, 100lenltd 11266 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
13498, 102lenltd 11266 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻‘(𝑥f𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
135133, 134anbi12d 632 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑)))))
136 ioran 985 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
137135, 136bitr4di 289 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑)))))
13838, 57ffvelcdmd 7024 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℕ0)
139138nn0red 12450 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℝ)
14034, 73nn0addcld 12453 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
141140ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
142141nn0red 12450 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
143139, 142lenltd 11266 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
144132, 137, 1433imtr3d 293 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
14596, 144mt4d 117 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))))
14667, 95, 145mpjaodan 960 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
147146mpteq2dva 5186 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅)))
148147oveq2d 7368 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))))
149 ringmnd 20163 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15051, 149syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
151150adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
152 ovex 7385 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1535, 152rab2ex 5282 . . . . . . 7 {𝑒𝐴𝑒r𝑥} ∈ V
15422gsumz 18746 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒r𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
155151, 153, 154sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
156148, 155eqtrd 2768 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (0g𝑅))
15710, 20, 1563eqtrd 2772 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
158157expr 456 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
159158ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1601, 107, 51mplringd 21961 . . . 4 (𝜑𝑌 ∈ Ring)
1612, 4ringcl 20170 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
162160, 6, 7, 161syl3anc 1373 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16333, 140sselid 3928 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16421, 1, 2, 22, 5, 23mdegleb 25997 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
165162, 163, 164syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
166159, 165mpbird 257 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  ccnv 5618  cima 5622  wf 6482  cfv 6486  (class class class)co 7352  f cof 7614  r cofr 7615  m cmap 8756  Fincfn 8875  cr 11012   + caddc 11016  *cxr 11152   < clt 11153  cle 11154  cmin 11351  cn 12132  0cn0 12388  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644  Ringcrg 20153  fldccnfld 21293   mPoly cmpl 21845   mDeg cmdg 25986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20463  df-subrg 20487  df-cnfld 21294  df-psr 21848  df-mpl 21850  df-mdeg 25988
This theorem is referenced by:  mdegmulle2  26012
  Copyright terms: Public domain W3C validator