MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 26137
Description: Lemma for mdegmulle2 26138. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 22054 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))))
98fveq1d 6922 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
109adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
11 breq2 5170 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒r𝑐𝑒r𝑥))
1211rabbidv 3451 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒r𝑐} = {𝑒𝐴𝑒r𝑥})
13 fvoveq1 7471 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐f𝑑)) = (𝐺‘(𝑥f𝑑)))
1413oveq2d 7464 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))
1512, 14mpteq12dv 5257 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))))
1615oveq2d 7464 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
17 eqid 2740 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))
18 ovex 7481 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) ∈ V
1916, 17, 18fvmpt 7029 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
2019ad2antrl 727 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2740 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3703 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒r𝑥} → 𝑑𝐴)
2625adantl 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑𝐴)
2726adantrr 716 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 26126 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 12557 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 11334 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 4018 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sselid 4006 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ*)
375, 23tdeglem1 26117 . . . . . . . . . . . . . . . . . . 19 𝐻:𝐴⟶ℕ0
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐻:𝐴⟶ℕ0)
3938, 26ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℕ0)
4033, 39sselid 4006 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ*)
4130, 36, 403jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4241adantrr 716 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
43 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4443ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ≤ 𝐽)
4544anim1i 614 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4645anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
47 xrlelttr 13218 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
4842, 46, 47sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
4921, 1, 2, 22, 5, 23, 24, 27, 48mdeglt 26124 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5049oveq1d 7463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))))
51 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5251ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑅 ∈ Ring)
53 eqid 2740 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
541, 53, 2, 5, 7mplelf 22041 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5554ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
56 ssrab2 4103 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒r𝑥} ⊆ 𝐴
57 simplrl 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑥𝐴)
58 eqid 2740 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒r𝑥} = {𝑒𝐴𝑒r𝑥}
595, 58psrbagconcl 21970 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6057, 59sylancom 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6156, 60sselid 4006 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ 𝐴)
6255, 61ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅))
6353, 3, 22ringlz 20316 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6452, 62, 63syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6564adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6650, 65eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6766anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
687ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → 𝐺𝐵)
6961adantrr 716 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝑥f𝑑) ∈ 𝐴)
7021, 1, 2mdegxrcl 26126 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
717, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7271ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ∈ ℝ*)
73 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7433, 73sselid 4006 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7574ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ*)
7638, 61ffvelcdmd 7119 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℕ0)
7733, 76sselid 4006 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ*)
7872, 75, 773jca 1128 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
7978adantrr 716 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
80 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8180ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ≤ 𝐾)
8281anim1i 614 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
8382anasss 466 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
84 xrlelttr 13218 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑))))
8579, 83, 84sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑)))
8621, 1, 2, 22, 5, 23, 68, 69, 85mdeglt 26124 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐺‘(𝑥f𝑑)) = (0g𝑅))
8786oveq2d 7464 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
881, 53, 2, 5, 6mplelf 22041 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
8988ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9089, 26ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9153, 3, 22ringrz 20317 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9252, 90, 91syl2anc 583 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9392adantrr 716 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9487, 93eqtrd 2780 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
9594anassrs 467 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
96 simplrr 777 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
9739nn0red 12614 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ)
9876nn0red 12614 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ)
9934ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℕ0)
10099nn0red 12614 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ)
10173ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℕ0)
102101nn0red 12614 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ)
103 le2add 11772 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
10497, 98, 100, 102, 103syl22anc 838 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
1055, 23tdeglem3 26118 . . . . . . . . . . . . . . 15 ((𝑑𝐴 ∧ (𝑥f𝑑) ∈ 𝐴) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
10626, 61, 105syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
107 mdegaddle.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
108107ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐼𝑉)
1095psrbagf 21961 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑𝐴𝑑:𝐼⟶ℕ0)
1101093ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
111110ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
112111nn0cnd 12615 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1135psrbagf 21961 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝑥:𝐼⟶ℕ0)
1141133ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
115114ffvelcdmda 7118 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
116115nn0cnd 12615 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
117112, 116pncan3d 11650 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
118117mpteq2dva 5266 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
119 simp1 1136 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
120 fvexd 6935 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
121 ovexd 7483 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
122110feqmptd 6990 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
123 fvexd 6935 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
124114feqmptd 6990 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
125119, 123, 120, 124, 122offval2 7734 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥f𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
126119, 120, 121, 122, 125offval2 7734 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
127118, 126, 1243eqtr4d 2790 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = 𝑥)
128108, 26, 57, 127syl3anc 1371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑑f + (𝑥f𝑑)) = 𝑥)
129128fveq2d 6924 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = (𝐻𝑥))
130106, 129eqtr3d 2782 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) = (𝐻𝑥))
131130breq1d 5176 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
132104, 131sylibd 239 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
13397, 100lenltd 11436 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
13498, 102lenltd 11436 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻‘(𝑥f𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
135133, 134anbi12d 631 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑)))))
136 ioran 984 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
137135, 136bitr4di 289 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑)))))
13838, 57ffvelcdmd 7119 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℕ0)
139138nn0red 12614 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℝ)
14034, 73nn0addcld 12617 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
141140ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
142141nn0red 12614 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
143139, 142lenltd 11436 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
144132, 137, 1433imtr3d 293 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
14596, 144mt4d 117 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))))
14667, 95, 145mpjaodan 959 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
147146mpteq2dva 5266 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅)))
148147oveq2d 7464 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))))
149 ringmnd 20270 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15051, 149syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
151150adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
152 ovex 7481 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1535, 152rab2ex 5360 . . . . . . 7 {𝑒𝐴𝑒r𝑥} ∈ V
15422gsumz 18871 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒r𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
155151, 153, 154sylancl 585 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
156148, 155eqtrd 2780 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (0g𝑅))
15710, 20, 1563eqtrd 2784 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
158157expr 456 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
159158ralrimiva 3152 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1601, 107, 51mplringd 22066 . . . 4 (𝜑𝑌 ∈ Ring)
1612, 4ringcl 20277 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
162160, 6, 7, 161syl3anc 1371 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16333, 140sselid 4006 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16421, 1, 2, 22, 5, 23mdegleb 26123 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
165162, 163, 164syl2anc 583 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
166159, 165mpbird 257 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  ccnv 5699  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  m cmap 8884  Fincfn 9003  cr 11183   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  Mndcmnd 18772  Ringcrg 20260  fldccnfld 21387   mPoly cmpl 21949   mDeg cmdg 26112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-subrng 20572  df-subrg 20597  df-cnfld 21388  df-psr 21952  df-mpl 21954  df-mdeg 26114
This theorem is referenced by:  mdegmulle2  26138
  Copyright terms: Public domain W3C validator