MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 24051
Description: Lemma for mdegmulle2 24052. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2771 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0𝑚 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 19651 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))))
98fveq1d 6332 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
109adantr 466 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥))
11 breq2 4790 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒𝑟𝑐𝑒𝑟𝑥))
1211rabbidv 3339 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒𝑟𝑐} = {𝑒𝐴𝑒𝑟𝑥})
13 fvoveq1 6814 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐𝑓𝑑)) = (𝐺‘(𝑥𝑓𝑑)))
1413oveq2d 6807 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
1512, 14mpteq12dv 4867 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))))
1615oveq2d 6807 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
17 eqid 2771 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))
18 ovex 6821 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) ∈ V
1916, 17, 18fvmpt 6422 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
2019ad2antrl 707 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐𝑓𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2771 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3510 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} → 𝑑𝐴)
2625adantl 467 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑𝐴)
2726adantrr 696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 24040 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 11496 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 10283 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3761 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sseldi 3750 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ*)
37 mdegaddle.i . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐼𝑉)
385, 23tdeglem1 24031 . . . . . . . . . . . . . . . . . . . 20 (𝐼𝑉𝐻:𝐴⟶ℕ0)
3937, 38syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻:𝐴⟶ℕ0)
4039ad2antrr 705 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐻:𝐴⟶ℕ0)
4140, 26ffvelrnd 6501 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℕ0)
4233, 41sseldi 3750 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ*)
4330, 36, 423jca 1122 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4443adantrr 696 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
45 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4645ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐹) ≤ 𝐽)
4746anim1i 602 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4847anasss 452 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
49 xrlelttr 12185 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
5044, 48, 49sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
5121, 1, 2, 22, 5, 23, 24, 27, 50mdeglt 24038 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5251oveq1d 6806 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))
53 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5453ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑅 ∈ Ring)
55 eqid 2771 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
561, 55, 2, 5, 7mplelf 19641 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5756ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
58 ssrab2 3836 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒𝑟𝑥} ⊆ 𝐴
5937ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐼𝑉)
60 simplrl 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑥𝐴)
61 simpr 471 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥})
62 eqid 2771 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒𝑟𝑥} = {𝑒𝐴𝑒𝑟𝑥}
635, 62psrbagconcl 19581 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6459, 60, 61, 63syl3anc 1476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ {𝑒𝐴𝑒𝑟𝑥})
6558, 64sseldi 3750 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑥𝑓𝑑) ∈ 𝐴)
6657, 65ffvelrnd 6501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅))
6755, 3, 22ringlz 18788 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥𝑓𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
6854, 66, 67syl2anc 573 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
6968adantrr 696 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7052, 69eqtrd 2805 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
7170anassrs 453 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
727ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → 𝐺𝐵)
7365adantrr 696 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝑥𝑓𝑑) ∈ 𝐴)
7421, 1, 2mdegxrcl 24040 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
757, 74syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7675ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ∈ ℝ*)
77 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7833, 77sseldi 3750 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7978ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ*)
8040, 65ffvelrnd 6501 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℕ0)
8133, 80sseldi 3750 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*)
8276, 79, 813jca 1122 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
8382adantrr 696 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*))
84 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8584ad2antrr 705 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐷𝐺) ≤ 𝐾)
8685anim1i 602 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
8786anasss 452 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))))
88 xrlelttr 12185 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥𝑓𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑))))
8983, 87, 88sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥𝑓𝑑)))
9021, 1, 2, 22, 5, 23, 72, 73, 89mdeglt 24038 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → (𝐺‘(𝑥𝑓𝑑)) = (0g𝑅))
9190oveq2d 6807 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
921, 55, 2, 5, 6mplelf 19641 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
9392ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9493, 26ffvelrnd 6501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9555, 3, 22ringrz 18789 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9654, 94, 95syl2anc 573 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9796adantrr 696 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9891, 97eqtrd 2805 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
9998anassrs 453 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) ∧ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
100 simplrr 763 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
10141nn0red 11552 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑑) ∈ ℝ)
10280nn0red 11552 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ)
10334ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℕ0)
104103nn0red 11552 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐽 ∈ ℝ)
10577ad2antrr 705 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℕ0)
106105nn0red 11552 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → 𝐾 ∈ ℝ)
107 le2add 10710 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥𝑓𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
108101, 102, 104, 106, 107syl22anc 1477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾)))
1095, 23tdeglem3 24032 . . . . . . . . . . . . . . 15 ((𝐼𝑉𝑑𝐴 ∧ (𝑥𝑓𝑑) ∈ 𝐴) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
11059, 26, 65, 109syl3anc 1476 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))))
1115psrbagf 19573 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑑𝐴) → 𝑑:𝐼⟶ℕ0)
1121113adant3 1126 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
113112ffvelrnda 6500 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
114113nn0cnd 11553 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1155psrbagf 19573 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐼𝑉𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
1161153adant2 1125 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
117116ffvelrnda 6500 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
118117nn0cnd 11553 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
119114, 118pncan3d 10595 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
120119mpteq2dva 4878 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
121 simp1 1130 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
122 fvexd 6342 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
123 ovexd 6823 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
124112feqmptd 6389 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
125 fvexd 6342 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
126116feqmptd 6389 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
127121, 125, 122, 126, 124offval2 7059 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥𝑓𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
128121, 122, 123, 124, 127offval2 7059 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
129120, 128, 1263eqtr4d 2815 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
13059, 26, 60, 129syl3anc 1476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝑑𝑓 + (𝑥𝑓𝑑)) = 𝑥)
131130fveq2d 6334 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻‘(𝑑𝑓 + (𝑥𝑓𝑑))) = (𝐻𝑥))
132110, 131eqtr3d 2807 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) = (𝐻𝑥))
133132breq1d 4796 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥𝑓𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
134108, 133sylibd 229 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
135101, 104lenltd 10383 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
136102, 106lenltd 10383 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
137135, 136anbi12d 616 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
138 ioran 968 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
139137, 138syl6bbr 278 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥𝑓𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑)))))
14040, 60ffvelrnd 6501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℕ0)
141140nn0red 11552 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐻𝑥) ∈ ℝ)
14234, 77nn0addcld 11555 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
143142ad2antrr 705 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
144143nn0red 11552 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
145141, 144lenltd 10383 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
146134, 139, 1453imtr3d 282 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
147100, 146mt4d 153 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥𝑓𝑑))))
14871, 99, 147mpjaodan 943 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))) = (0g𝑅))
149148mpteq2dva 4878 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅)))
150149oveq2d 6807 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))))
151 ringmnd 18757 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15253, 151syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
153152adantr 466 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
154 ovex 6821 . . . . . . . 8 (ℕ0𝑚 𝐼) ∈ V
1555, 154rab2ex 4949 . . . . . . 7 {𝑒𝐴𝑒𝑟𝑥} ∈ V
15622gsumz 17575 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒𝑟𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
157153, 155, 156sylancl 574 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ (0g𝑅))) = (0g𝑅))
158150, 157eqtrd 2805 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒𝑟𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥𝑓𝑑))))) = (0g𝑅))
15910, 20, 1583eqtrd 2809 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
160159expr 444 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
161160ralrimiva 3115 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1621mplring 19660 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
16337, 53, 162syl2anc 573 . . . 4 (𝜑𝑌 ∈ Ring)
1642, 4ringcl 18762 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
165163, 6, 7, 164syl3anc 1476 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16633, 142sseldi 3750 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16721, 1, 2, 22, 5, 23mdegleb 24037 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
168165, 166, 167syl2anc 573 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
169161, 168mpbird 247 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  Vcvv 3351   class class class wbr 4786  cmpt 4863  ccnv 5248  cima 5252  wf 6025  cfv 6029  (class class class)co 6791  𝑓 cof 7040  𝑟 cofr 7041  𝑚 cmap 8007  Fincfn 8107  cr 10135   + caddc 10139  *cxr 10273   < clt 10274  cle 10275  cmin 10466  cn 11220  0cn0 11492  Basecbs 16057  .rcmulr 16143  0gc0g 16301   Σg cgsu 16302  Mndcmnd 17495  Ringcrg 18748   mPoly cmpl 19561  fldccnfld 19954   mDeg cmdg 24026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-inf2 8700  ax-cnex 10192  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212  ax-pre-mulgt0 10213  ax-pre-sup 10214  ax-addf 10215  ax-mulf 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-of 7042  df-ofr 7043  df-om 7211  df-1st 7313  df-2nd 7314  df-supp 7445  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-pm 8010  df-ixp 8061  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-fsupp 8430  df-sup 8502  df-oi 8569  df-card 8963  df-pnf 10276  df-mnf 10277  df-xr 10278  df-ltxr 10279  df-le 10280  df-sub 10468  df-neg 10469  df-nn 11221  df-2 11279  df-3 11280  df-4 11281  df-5 11282  df-6 11283  df-7 11284  df-8 11285  df-9 11286  df-n0 11493  df-z 11578  df-dec 11694  df-uz 11887  df-fz 12527  df-fzo 12667  df-seq 13002  df-hash 13315  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16155  df-mulr 16156  df-starv 16157  df-sca 16158  df-vsca 16159  df-tset 16161  df-ple 16162  df-ds 16165  df-unif 16166  df-0g 16303  df-gsum 16304  df-mre 16447  df-mrc 16448  df-acs 16450  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-ghm 17859  df-cntz 17950  df-cmn 18395  df-abl 18396  df-mgp 18691  df-ur 18703  df-ring 18750  df-cring 18751  df-subrg 18981  df-psr 19564  df-mpl 19566  df-cnfld 19955  df-mdeg 24028
This theorem is referenced by:  mdegmulle2  24052
  Copyright terms: Public domain W3C validator