MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdegmullem Structured version   Visualization version   GIF version

Theorem mdegmullem 25253
Description: Lemma for mdegmulle2 25254. (Contributed by Stefan O'Rear, 26-Mar-2015.)
Hypotheses
Ref Expression
mdegaddle.y 𝑌 = (𝐼 mPoly 𝑅)
mdegaddle.d 𝐷 = (𝐼 mDeg 𝑅)
mdegaddle.i (𝜑𝐼𝑉)
mdegaddle.r (𝜑𝑅 ∈ Ring)
mdegmulle2.b 𝐵 = (Base‘𝑌)
mdegmulle2.t · = (.r𝑌)
mdegmulle2.f (𝜑𝐹𝐵)
mdegmulle2.g (𝜑𝐺𝐵)
mdegmulle2.j1 (𝜑𝐽 ∈ ℕ0)
mdegmulle2.k1 (𝜑𝐾 ∈ ℕ0)
mdegmulle2.j2 (𝜑 → (𝐷𝐹) ≤ 𝐽)
mdegmulle2.k2 (𝜑 → (𝐷𝐺) ≤ 𝐾)
mdegmullem.a 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
mdegmullem.h 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
Assertion
Ref Expression
mdegmullem (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Distinct variable groups:   𝐼,𝑎,𝑏   𝑅,𝑏   𝑉,𝑏   𝐴,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎)   𝐵(𝑎,𝑏)   𝐷(𝑎,𝑏)   𝑅(𝑎)   · (𝑎,𝑏)   𝐹(𝑎,𝑏)   𝐺(𝑎,𝑏)   𝐻(𝑎,𝑏)   𝐽(𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑎)   𝑌(𝑎,𝑏)

Proof of Theorem mdegmullem
Dummy variables 𝑐 𝑑 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mdegaddle.y . . . . . . . 8 𝑌 = (𝐼 mPoly 𝑅)
2 mdegmulle2.b . . . . . . . 8 𝐵 = (Base‘𝑌)
3 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
4 mdegmulle2.t . . . . . . . 8 · = (.r𝑌)
5 mdegmullem.a . . . . . . . 8 𝐴 = {𝑎 ∈ (ℕ0m 𝐼) ∣ (𝑎 “ ℕ) ∈ Fin}
6 mdegmulle2.f . . . . . . . 8 (𝜑𝐹𝐵)
7 mdegmulle2.g . . . . . . . 8 (𝜑𝐺𝐵)
81, 2, 3, 4, 5, 6, 7mplmul 21225 . . . . . . 7 (𝜑 → (𝐹 · 𝐺) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))))
98fveq1d 6768 . . . . . 6 (𝜑 → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
109adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥))
11 breq2 5077 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝑒r𝑐𝑒r𝑥))
1211rabbidv 3411 . . . . . . . . 9 (𝑐 = 𝑥 → {𝑒𝐴𝑒r𝑐} = {𝑒𝐴𝑒r𝑥})
13 fvoveq1 7290 . . . . . . . . . 10 (𝑐 = 𝑥 → (𝐺‘(𝑐f𝑑)) = (𝐺‘(𝑥f𝑑)))
1413oveq2d 7283 . . . . . . . . 9 (𝑐 = 𝑥 → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))) = ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))
1512, 14mpteq12dv 5164 . . . . . . . 8 (𝑐 = 𝑥 → (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))))
1615oveq2d 7283 . . . . . . 7 (𝑐 = 𝑥 → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
17 eqid 2738 . . . . . . 7 (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑)))))) = (𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))
18 ovex 7300 . . . . . . 7 (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) ∈ V
1916, 17, 18fvmpt 6867 . . . . . 6 (𝑥𝐴 → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
2019ad2antrl 725 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝑐𝐴 ↦ (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑐} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑐f𝑑))))))‘𝑥) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))))
21 mdegaddle.d . . . . . . . . . . . . 13 𝐷 = (𝐼 mDeg 𝑅)
22 eqid 2738 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
23 mdegmullem.h . . . . . . . . . . . . 13 𝐻 = (𝑏𝐴 ↦ (ℂfld Σg 𝑏))
246ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝐹𝐵)
25 elrabi 3617 . . . . . . . . . . . . . . 15 (𝑑 ∈ {𝑒𝐴𝑒r𝑥} → 𝑑𝐴)
2625adantl 482 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑑𝐴)
2726adantrr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → 𝑑𝐴)
2821, 1, 2mdegxrcl 25242 . . . . . . . . . . . . . . . . . 18 (𝐹𝐵 → (𝐷𝐹) ∈ ℝ*)
296, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ∈ ℝ*)
3029ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ∈ ℝ*)
31 nn0ssre 12247 . . . . . . . . . . . . . . . . . . 19 0 ⊆ ℝ
32 ressxr 11029 . . . . . . . . . . . . . . . . . . 19 ℝ ⊆ ℝ*
3331, 32sstri 3929 . . . . . . . . . . . . . . . . . 18 0 ⊆ ℝ*
34 mdegmulle2.j1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ ℕ0)
3533, 34sselid 3918 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ ℝ*)
3635ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ*)
375, 23tdeglem1 25230 . . . . . . . . . . . . . . . . . . 19 𝐻:𝐴⟶ℕ0
3837a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐻:𝐴⟶ℕ0)
3938, 26ffvelrnd 6954 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℕ0)
4033, 39sselid 3918 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ*)
4130, 36, 403jca 1127 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
4241adantrr 714 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*))
43 mdegmulle2.j2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐹) ≤ 𝐽)
4443ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐹) ≤ 𝐽)
4544anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
4645anasss 467 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)))
47 xrlelttr 12900 . . . . . . . . . . . . . 14 (((𝐷𝐹) ∈ ℝ*𝐽 ∈ ℝ* ∧ (𝐻𝑑) ∈ ℝ*) → (((𝐷𝐹) ≤ 𝐽𝐽 < (𝐻𝑑)) → (𝐷𝐹) < (𝐻𝑑)))
4842, 46, 47sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐷𝐹) < (𝐻𝑑))
4921, 1, 2, 22, 5, 23, 24, 27, 48mdeglt 25240 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → (𝐹𝑑) = (0g𝑅))
5049oveq1d 7282 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))))
51 mdegaddle.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5251ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑅 ∈ Ring)
53 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
541, 53, 2, 5, 7mplelf 21214 . . . . . . . . . . . . . . 15 (𝜑𝐺:𝐴⟶(Base‘𝑅))
5554ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐺:𝐴⟶(Base‘𝑅))
56 ssrab2 4012 . . . . . . . . . . . . . . 15 {𝑒𝐴𝑒r𝑥} ⊆ 𝐴
57 simplrl 774 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝑥𝐴)
58 eqid 2738 . . . . . . . . . . . . . . . . 17 {𝑒𝐴𝑒r𝑥} = {𝑒𝐴𝑒r𝑥}
595, 58psrbagconcl 21147 . . . . . . . . . . . . . . . 16 ((𝑥𝐴𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6057, 59sylancom 588 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ {𝑒𝐴𝑒r𝑥})
6156, 60sselid 3918 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑥f𝑑) ∈ 𝐴)
6255, 61ffvelrnd 6954 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅))
6353, 3, 22ringlz 19836 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐺‘(𝑥f𝑑)) ∈ (Base‘𝑅)) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6452, 62, 63syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6564adantrr 714 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((0g𝑅)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6650, 65eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐽 < (𝐻𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
6766anassrs 468 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐽 < (𝐻𝑑)) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
687ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → 𝐺𝐵)
6961adantrr 714 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝑥f𝑑) ∈ 𝐴)
7021, 1, 2mdegxrcl 25242 . . . . . . . . . . . . . . . . . 18 (𝐺𝐵 → (𝐷𝐺) ∈ ℝ*)
717, 70syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ∈ ℝ*)
7271ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ∈ ℝ*)
73 mdegmulle2.k1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℕ0)
7433, 73sselid 3918 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ ℝ*)
7574ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ*)
7638, 61ffvelrnd 6954 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℕ0)
7733, 76sselid 3918 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ*)
7872, 75, 773jca 1127 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
7978adantrr 714 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*))
80 mdegmulle2.k2 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷𝐺) ≤ 𝐾)
8180ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐷𝐺) ≤ 𝐾)
8281anim1i 615 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
8382anasss 467 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))))
84 xrlelttr 12900 . . . . . . . . . . . . . 14 (((𝐷𝐺) ∈ ℝ*𝐾 ∈ ℝ* ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ*) → (((𝐷𝐺) ≤ 𝐾𝐾 < (𝐻‘(𝑥f𝑑))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑))))
8579, 83, 84sylc 65 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐷𝐺) < (𝐻‘(𝑥f𝑑)))
8621, 1, 2, 22, 5, 23, 68, 69, 85mdeglt 25240 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → (𝐺‘(𝑥f𝑑)) = (0g𝑅))
8786oveq2d 7283 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = ((𝐹𝑑)(.r𝑅)(0g𝑅)))
881, 53, 2, 5, 6mplelf 21214 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶(Base‘𝑅))
8988ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐹:𝐴⟶(Base‘𝑅))
9089, 26ffvelrnd 6954 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐹𝑑) ∈ (Base‘𝑅))
9153, 3, 22ringrz 19837 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝐹𝑑) ∈ (Base‘𝑅)) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9252, 90, 91syl2anc 584 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9392adantrr 714 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(0g𝑅)) = (0g𝑅))
9487, 93eqtrd 2778 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ∧ 𝐾 < (𝐻‘(𝑥f𝑑)))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
9594anassrs 468 . . . . . . . . 9 ((((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) ∧ 𝐾 < (𝐻‘(𝑥f𝑑))) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
96 simplrr 775 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) < (𝐻𝑥))
9739nn0red 12304 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑑) ∈ ℝ)
9876nn0red 12304 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑥f𝑑)) ∈ ℝ)
9934ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℕ0)
10099nn0red 12304 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐽 ∈ ℝ)
10173ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℕ0)
102101nn0red 12304 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐾 ∈ ℝ)
103 le2add 11467 . . . . . . . . . . . . 13 ((((𝐻𝑑) ∈ ℝ ∧ (𝐻‘(𝑥f𝑑)) ∈ ℝ) ∧ (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ)) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
10497, 98, 100, 102, 103syl22anc 836 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾)))
1055, 23tdeglem3 25232 . . . . . . . . . . . . . . 15 ((𝑑𝐴 ∧ (𝑥f𝑑) ∈ 𝐴) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
10626, 61, 105syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))))
107 mdegaddle.i . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
108107ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → 𝐼𝑉)
1095psrbagf 21131 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑𝐴𝑑:𝐼⟶ℕ0)
1101093ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑:𝐼⟶ℕ0)
111110ffvelrnda 6953 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℕ0)
112111nn0cnd 12305 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ ℂ)
1135psrbagf 21131 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥𝐴𝑥:𝐼⟶ℕ0)
1141133ad2ant3 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥:𝐼⟶ℕ0)
115114ffvelrnda 6953 . . . . . . . . . . . . . . . . . . . 20 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℕ0)
116115nn0cnd 12305 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ ℂ)
117112, 116pncan3d 11345 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏))) = (𝑥𝑏))
118117mpteq2dva 5173 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))) = (𝑏𝐼 ↦ (𝑥𝑏)))
119 simp1 1135 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝐼𝑉)
120 fvexd 6781 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑑𝑏) ∈ V)
121 ovexd 7302 . . . . . . . . . . . . . . . . . 18 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → ((𝑥𝑏) − (𝑑𝑏)) ∈ V)
122110feqmptd 6829 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑑 = (𝑏𝐼 ↦ (𝑑𝑏)))
123 fvexd 6781 . . . . . . . . . . . . . . . . . . 19 (((𝐼𝑉𝑑𝐴𝑥𝐴) ∧ 𝑏𝐼) → (𝑥𝑏) ∈ V)
124114feqmptd 6829 . . . . . . . . . . . . . . . . . . 19 ((𝐼𝑉𝑑𝐴𝑥𝐴) → 𝑥 = (𝑏𝐼 ↦ (𝑥𝑏)))
125119, 123, 120, 124, 122offval2 7543 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑥f𝑑) = (𝑏𝐼 ↦ ((𝑥𝑏) − (𝑑𝑏))))
126119, 120, 121, 122, 125offval2 7543 . . . . . . . . . . . . . . . . 17 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = (𝑏𝐼 ↦ ((𝑑𝑏) + ((𝑥𝑏) − (𝑑𝑏)))))
127118, 126, 1243eqtr4d 2788 . . . . . . . . . . . . . . . 16 ((𝐼𝑉𝑑𝐴𝑥𝐴) → (𝑑f + (𝑥f𝑑)) = 𝑥)
128108, 26, 57, 127syl3anc 1370 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝑑f + (𝑥f𝑑)) = 𝑥)
129128fveq2d 6770 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻‘(𝑑f + (𝑥f𝑑))) = (𝐻𝑥))
130106, 129eqtr3d 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) = (𝐻𝑥))
131130breq1d 5083 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) + (𝐻‘(𝑥f𝑑))) ≤ (𝐽 + 𝐾) ↔ (𝐻𝑥) ≤ (𝐽 + 𝐾)))
132104, 131sylibd 238 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) → (𝐻𝑥) ≤ (𝐽 + 𝐾)))
13397, 100lenltd 11131 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑑) ≤ 𝐽 ↔ ¬ 𝐽 < (𝐻𝑑)))
13498, 102lenltd 11131 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻‘(𝑥f𝑑)) ≤ 𝐾 ↔ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
135133, 134anbi12d 631 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑)))))
136 ioran 981 . . . . . . . . . . . 12 (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) ↔ (¬ 𝐽 < (𝐻𝑑) ∧ ¬ 𝐾 < (𝐻‘(𝑥f𝑑))))
137135, 136bitr4di 289 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (((𝐻𝑑) ≤ 𝐽 ∧ (𝐻‘(𝑥f𝑑)) ≤ 𝐾) ↔ ¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑)))))
13838, 57ffvelrnd 6954 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℕ0)
139138nn0red 12304 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐻𝑥) ∈ ℝ)
14034, 73nn0addcld 12307 . . . . . . . . . . . . . 14 (𝜑 → (𝐽 + 𝐾) ∈ ℕ0)
141140ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℕ0)
142141nn0red 12304 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 + 𝐾) ∈ ℝ)
143139, 142lenltd 11131 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐻𝑥) ≤ (𝐽 + 𝐾) ↔ ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
144132, 137, 1433imtr3d 293 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (¬ (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))) → ¬ (𝐽 + 𝐾) < (𝐻𝑥)))
14596, 144mt4d 117 . . . . . . . . 9 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → (𝐽 < (𝐻𝑑) ∨ 𝐾 < (𝐻‘(𝑥f𝑑))))
14667, 95, 145mpjaodan 956 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) ∧ 𝑑 ∈ {𝑒𝐴𝑒r𝑥}) → ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))) = (0g𝑅))
147146mpteq2dva 5173 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑)))) = (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅)))
148147oveq2d 7283 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))))
149 ringmnd 19803 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
15051, 149syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Mnd)
151150adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → 𝑅 ∈ Mnd)
152 ovex 7300 . . . . . . . 8 (ℕ0m 𝐼) ∈ V
1535, 152rab2ex 5257 . . . . . . 7 {𝑒𝐴𝑒r𝑥} ∈ V
15422gsumz 18484 . . . . . . 7 ((𝑅 ∈ Mnd ∧ {𝑒𝐴𝑒r𝑥} ∈ V) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
155151, 153, 154sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ (0g𝑅))) = (0g𝑅))
156148, 155eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → (𝑅 Σg (𝑑 ∈ {𝑒𝐴𝑒r𝑥} ↦ ((𝐹𝑑)(.r𝑅)(𝐺‘(𝑥f𝑑))))) = (0g𝑅))
15710, 20, 1563eqtrd 2782 . . . 4 ((𝜑 ∧ (𝑥𝐴 ∧ (𝐽 + 𝐾) < (𝐻𝑥))) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))
158157expr 457 . . 3 ((𝜑𝑥𝐴) → ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
159158ralrimiva 3108 . 2 (𝜑 → ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅)))
1601mplring 21234 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → 𝑌 ∈ Ring)
161107, 51, 160syl2anc 584 . . . 4 (𝜑𝑌 ∈ Ring)
1622, 4ringcl 19810 . . . 4 ((𝑌 ∈ Ring ∧ 𝐹𝐵𝐺𝐵) → (𝐹 · 𝐺) ∈ 𝐵)
163161, 6, 7, 162syl3anc 1370 . . 3 (𝜑 → (𝐹 · 𝐺) ∈ 𝐵)
16433, 140sselid 3918 . . 3 (𝜑 → (𝐽 + 𝐾) ∈ ℝ*)
16521, 1, 2, 22, 5, 23mdegleb 25239 . . 3 (((𝐹 · 𝐺) ∈ 𝐵 ∧ (𝐽 + 𝐾) ∈ ℝ*) → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
166163, 164, 165syl2anc 584 . 2 (𝜑 → ((𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾) ↔ ∀𝑥𝐴 ((𝐽 + 𝐾) < (𝐻𝑥) → ((𝐹 · 𝐺)‘𝑥) = (0g𝑅))))
167159, 166mpbird 256 1 (𝜑 → (𝐷‘(𝐹 · 𝐺)) ≤ (𝐽 + 𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3429   class class class wbr 5073  cmpt 5156  ccnv 5583  cima 5587  wf 6422  cfv 6426  (class class class)co 7267  f cof 7521  r cofr 7522  m cmap 8602  Fincfn 8720  cr 10880   + caddc 10884  *cxr 11018   < clt 11019  cle 11020  cmin 11215  cn 11983  0cn0 12243  Basecbs 16922  .rcmulr 16973  0gc0g 17160   Σg cgsu 17161  Mndcmnd 18395  Ringcrg 19793  fldccnfld 20607   mPoly cmpl 21119   mDeg cmdg 25225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959  ax-addf 10960  ax-mulf 10961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-se 5540  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-isom 6435  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-of 7523  df-ofr 7524  df-om 7703  df-1st 7820  df-2nd 7821  df-supp 7965  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-map 8604  df-pm 8605  df-ixp 8673  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-fsupp 9116  df-sup 9188  df-oi 9256  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-uz 12593  df-fz 13250  df-fzo 13393  df-seq 13732  df-hash 14055  df-struct 16858  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-plusg 16985  df-mulr 16986  df-starv 16987  df-sca 16988  df-vsca 16989  df-tset 16991  df-ple 16992  df-ds 16994  df-unif 16995  df-0g 17162  df-gsum 17163  df-mre 17305  df-mrc 17306  df-acs 17308  df-mgm 18336  df-sgrp 18385  df-mnd 18396  df-mhm 18440  df-submnd 18441  df-grp 18590  df-minusg 18591  df-mulg 18711  df-subg 18762  df-ghm 18842  df-cntz 18933  df-cmn 19398  df-abl 19399  df-mgp 19731  df-ur 19748  df-ring 19795  df-cring 19796  df-subrg 20032  df-cnfld 20608  df-psr 21122  df-mpl 21124  df-mdeg 25227
This theorem is referenced by:  mdegmulle2  25254
  Copyright terms: Public domain W3C validator