Proof of Theorem pwfseqlem4
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . . . . 11
⊢ 𝑍 = 𝑍 |
2 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑊‘𝑍) = (𝑊‘𝑍) |
3 | 1, 2 | pm3.2i 471 |
. . . . . . . . . 10
⊢ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)) |
4 | | pwfseqlem4.w |
. . . . . . . . . . 11
⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} |
5 | | pwfseqlem4.g |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
6 | | omex 9401 |
. . . . . . . . . . . . . 14
⊢ ω
∈ V |
7 | | ovex 7308 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ↑m 𝑛) ∈ V |
8 | 6, 7 | iunex 7811 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V |
9 | | f1dmex 7799 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∧ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V) |
10 | 5, 8, 9 | sylancl 586 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
11 | | pwexb 7616 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
12 | 10, 11 | sylibr 233 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ V) |
13 | | pwfseqlem4.x |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
14 | | pwfseqlem4.h |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) |
15 | | pwfseqlem4.ps |
. . . . . . . . . . . 12
⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) |
16 | | pwfseqlem4.k |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
17 | | pwfseqlem4.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
18 | | pwfseqlem4.f |
. . . . . . . . . . . 12
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
19 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem4a 10417 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) |
20 | | pwfseqlem4.z |
. . . . . . . . . . 11
⊢ 𝑍 = ∪
dom 𝑊 |
21 | 4, 12, 19, 20 | fpwwe2 10399 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) ↔ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)))) |
22 | 3, 21 | mpbiri 257 |
. . . . . . . . 9
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
23 | 22 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) |
24 | 22 | simpld 495 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑍𝑊(𝑊‘𝑍)) |
25 | 4, 12 | fpwwe2lem2 10388 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ↔ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)))) |
26 | 24, 25 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))) |
27 | 26 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
28 | 27 | simpld 495 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
29 | 12, 28 | ssexd 5248 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ V) |
30 | | sseq1 3946 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑍 → (𝑎 ⊆ 𝐴 ↔ 𝑍 ⊆ 𝐴)) |
31 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = 𝑍 → 𝑎 = 𝑍) |
32 | 31 | sqxpeqd 5621 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = 𝑍 → (𝑎 × 𝑎) = (𝑍 × 𝑍)) |
33 | 32 | sseq2d 3953 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑍 → ((𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ↔ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
34 | | weeq2 5578 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑍 → ((𝑊‘𝑍) We 𝑎 ↔ (𝑊‘𝑍) We 𝑍)) |
35 | 30, 33, 34 | 3anbi123d 1435 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑍 → ((𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎) ↔ (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍))) |
36 | 35 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑍 → ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)) ↔ (𝜑 ∧ (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)))) |
37 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
38 | 37 | 3expa 1117 |
. . . . . . . . . . . . . . 15
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
39 | 38 | adantrr 714 |
. . . . . . . . . . . . . 14
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
40 | 26, 39 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
41 | 40 | pm4.71i 560 |
. . . . . . . . . . . 12
⊢ (𝜑 ↔ (𝜑 ∧ (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍))) |
42 | 36, 41 | bitr4di 289 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑍 → ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)) ↔ 𝜑)) |
43 | | oveq1 7282 |
. . . . . . . . . . . . 13
⊢ (𝑎 = 𝑍 → (𝑎𝐹(𝑊‘𝑍)) = (𝑍𝐹(𝑊‘𝑍))) |
44 | 43, 31 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑍 → ((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 ↔ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
45 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑍 → (𝑎 ≺ ω ↔ 𝑍 ≺ ω)) |
46 | 44, 45 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝑍 → (((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 → 𝑎 ≺ ω) ↔ ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
47 | 42, 46 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑍 → (((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)) → ((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 → 𝑎 ≺ ω)) ↔ (𝜑 → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω)))) |
48 | | fvex 6787 |
. . . . . . . . . . 11
⊢ (𝑊‘𝑍) ∈ V |
49 | | sseq1 3946 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑊‘𝑍) → (𝑠 ⊆ (𝑎 × 𝑎) ↔ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎))) |
50 | | weeq1 5577 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑊‘𝑍) → (𝑠 We 𝑎 ↔ (𝑊‘𝑍) We 𝑎)) |
51 | 49, 50 | 3anbi23d 1438 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑊‘𝑍) → ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ↔ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎))) |
52 | 51 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑊‘𝑍) → ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) ↔ (𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)))) |
53 | | oveq2 7283 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑊‘𝑍) → (𝑎𝐹𝑠) = (𝑎𝐹(𝑊‘𝑍))) |
54 | 53 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑊‘𝑍) → ((𝑎𝐹𝑠) ∈ 𝑎 ↔ (𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎)) |
55 | 54 | imbi1d 342 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑊‘𝑍) → (((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω) ↔ ((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 → 𝑎 ≺ ω))) |
56 | 52, 55 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑊‘𝑍) → (((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) ↔ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)) → ((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 → 𝑎 ≺ ω)))) |
57 | | omelon 9404 |
. . . . . . . . . . . . . . 15
⊢ ω
∈ On |
58 | | onenon 9707 |
. . . . . . . . . . . . . . 15
⊢ (ω
∈ On → ω ∈ dom card) |
59 | 57, 58 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ω
∈ dom card |
60 | | simpr3 1195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎) |
61 | 60 | 19.8ad 2175 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎) |
62 | | ween 9791 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ dom card ↔
∃𝑠 𝑠 We 𝑎) |
63 | 61, 62 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card) |
64 | | domtri2 9747 |
. . . . . . . . . . . . . 14
⊢ ((ω
∈ dom card ∧ 𝑎
∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
65 | 59, 63, 64 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
66 | | nfv 1917 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) |
67 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟𝑎 |
68 | | nfmpo2 7356 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
69 | 18, 68 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟𝐹 |
70 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟𝑠 |
71 | 67, 69, 70 | nfov 7305 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟(𝑎𝐹𝑠) |
72 | 71 | nfel1 2923 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟(𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎) |
73 | 66, 72 | nfim 1899 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
74 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎))) |
75 | | weeq1 5577 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑟 = 𝑠 → (𝑟 We 𝑎 ↔ 𝑠 We 𝑎)) |
76 | 74, 75 | 3anbi23d 1438 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑠 → ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎))) |
77 | 76 | anbi1d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → (((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))) |
78 | 77 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))) |
79 | | oveq2 7283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠)) |
80 | 79 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎))) |
81 | 78, 80 | imbi12d 345 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)))) |
82 | | nfv 1917 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) |
83 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥𝑎 |
84 | | nfmpo1 7355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
85 | 18, 84 | nfcxfr 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥𝐹 |
86 | | nfcv 2907 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥𝑟 |
87 | 83, 85, 86 | nfov 7305 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥(𝑎𝐹𝑟) |
88 | 87 | nfel1 2923 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) |
89 | 82, 88 | nfim 1899 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
90 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴)) |
91 | | xpeq12 5614 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 = 𝑎 ∧ 𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
92 | 91 | anidms 567 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
93 | 92 | sseq2d 3953 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎))) |
94 | | weeq2 5578 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑎)) |
95 | 90, 93, 94 | 3anbi123d 1435 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎))) |
96 | | breq2 5078 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎)) |
97 | 95, 96 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
98 | 15, 97 | bitrid 282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
99 | 98 | anbi2d 629 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))) |
100 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟)) |
101 | | difeq2 4051 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) |
102 | 100, 101 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎))) |
103 | 99, 102 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)))) |
104 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem3 10416 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) |
105 | 89, 103, 104 | chvarfv 2233 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
106 | 73, 81, 105 | chvarfv 2233 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
107 | 106 | eldifbd 3900 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → ¬ (𝑎𝐹𝑠) ∈ 𝑎) |
108 | 107 | expr 457 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
109 | 65, 108 | sylbird 259 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
110 | 109 | con4d 115 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) |
111 | 48, 56, 110 | vtocl 3498 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊‘𝑍) We 𝑎)) → ((𝑎𝐹(𝑊‘𝑍)) ∈ 𝑎 → 𝑎 ≺ ω)) |
112 | 47, 111 | vtoclg 3505 |
. . . . . . . . 9
⊢ (𝑍 ∈ V → (𝜑 → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
113 | 29, 112 | mpcom 38 |
. . . . . . . 8
⊢ (𝜑 → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω)) |
114 | 23, 113 | mpd 15 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ≺ ω) |
115 | | isfinite 9410 |
. . . . . . 7
⊢ (𝑍 ∈ Fin ↔ 𝑍 ≺
ω) |
116 | 114, 115 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ Fin) |
117 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10415 |
. . . . . 6
⊢ ((𝑍 ∈ Fin ∧ (𝑊‘𝑍) ∈ V) → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
118 | 116, 48, 117 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
119 | 118, 23 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ 𝑍) |
120 | 4, 12, 24 | fpwwe2lem3 10389 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
121 | 119, 120 | mpdan 684 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
122 | | cnvimass 5989 |
. . . . . . . . . . . 12
⊢ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ dom (𝑊‘𝑍) |
123 | 27 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) |
124 | | dmss 5811 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑍) ⊆ (𝑍 × 𝑍) → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
125 | 123, 124 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
126 | | dmxpss 6074 |
. . . . . . . . . . . . 13
⊢ dom
(𝑍 × 𝑍) ⊆ 𝑍 |
127 | 125, 126 | sstrdi 3933 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ 𝑍) |
128 | 122, 127 | sstrid 3932 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍) |
129 | 116, 128 | ssfid 9042 |
. . . . . . . . . 10
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin) |
130 | 48 | inex1 5241 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V |
131 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10415 |
. . . . . . . . . 10
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin ∧ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
132 | 129, 130,
131 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
133 | 121, 132 | eqtr3d 2780 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
134 | | f1of1 6715 |
. . . . . . . . . 10
⊢ (𝐻:ω–1-1-onto→𝑋 → 𝐻:ω–1-1→𝑋) |
135 | 14, 134 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:ω–1-1→𝑋) |
136 | | ficardom 9719 |
. . . . . . . . . 10
⊢ (𝑍 ∈ Fin →
(card‘𝑍) ∈
ω) |
137 | 116, 136 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘𝑍) ∈
ω) |
138 | | ficardom 9719 |
. . . . . . . . . 10
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
139 | 129, 138 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
140 | | f1fveq 7135 |
. . . . . . . . 9
⊢ ((𝐻:ω–1-1→𝑋 ∧ ((card‘𝑍) ∈ ω ∧ (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)) → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
141 | 135, 137,
139, 140 | syl12anc 834 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
142 | 133, 141 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) |
143 | 142 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍)) |
144 | | finnum 9706 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
145 | 129, 144 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
146 | | finnum 9706 |
. . . . . . . 8
⊢ (𝑍 ∈ Fin → 𝑍 ∈ dom
card) |
147 | 116, 146 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ dom card) |
148 | | carden2 9745 |
. . . . . . 7
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card ∧ 𝑍 ∈ dom card) → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
149 | 145, 147,
148 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
150 | 143, 149 | mpbid 231 |
. . . . 5
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
151 | | dfpss2 4020 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 ∧ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
152 | 151 | baib 536 |
. . . . . . 7
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
153 | 128, 152 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
154 | | php3 8995 |
. . . . . . . . 9
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍) |
155 | | sdomnen 8769 |
. . . . . . . . 9
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
156 | 154, 155 | syl 17 |
. . . . . . . 8
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
157 | 156 | ex 413 |
. . . . . . 7
⊢ (𝑍 ∈ Fin → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
158 | 116, 157 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
159 | 153, 158 | sylbird 259 |
. . . . 5
⊢ (𝜑 → (¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
160 | 150, 159 | mt4d 117 |
. . . 4
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍) |
161 | 119, 160 | eleqtrrd 2842 |
. . 3
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) |
162 | | fvex 6787 |
. . . 4
⊢ (𝐻‘(card‘𝑍)) ∈ V |
163 | 162 | eliniseg 6002 |
. . . 4
⊢ ((𝐻‘(card‘𝑍)) ∈ V → ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍)))) |
164 | 162, 163 | ax-mp 5 |
. . 3
⊢ ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
165 | 161, 164 | sylib 217 |
. 2
⊢ (𝜑 → (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
166 | 26 | simprd 496 |
. . . . 5
⊢ (𝜑 → ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) |
167 | 166 | simpld 495 |
. . . 4
⊢ (𝜑 → (𝑊‘𝑍) We 𝑍) |
168 | | weso 5580 |
. . . 4
⊢ ((𝑊‘𝑍) We 𝑍 → (𝑊‘𝑍) Or 𝑍) |
169 | 167, 168 | syl 17 |
. . 3
⊢ (𝜑 → (𝑊‘𝑍) Or 𝑍) |
170 | | sonr 5526 |
. . 3
⊢ (((𝑊‘𝑍) Or 𝑍 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
171 | 169, 119,
170 | syl2anc 584 |
. 2
⊢ (𝜑 → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
172 | 165, 171 | pm2.65i 193 |
1
⊢ ¬
𝜑 |