MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4 Structured version   Visualization version   GIF version

Theorem pwfseqlem4 10418
Description: Lemma for pwfseq 10420. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10416. Applying fpwwe2 10399 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
pwfseqlem4.w 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))}
pwfseqlem4.z 𝑍 = dom 𝑊
Assertion
Ref Expression
pwfseqlem4 ¬ 𝜑
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑎,𝑏,𝑠,𝑣,𝐹   𝑤,𝐺   𝑤,𝐾   𝑟,𝑎,𝑥,𝑧,𝐻,𝑏,𝑠,𝑣   𝑛,𝑎,𝜑,𝑏,𝑠,𝑣,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑎,𝑛,𝑟,𝑠,𝑥,𝑧   𝑊,𝑎,𝑏,𝑠,𝑣   𝑍,𝑎,𝑏,𝑠,𝑣
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑣,𝑠,𝑟,𝑎,𝑏)   𝐴(𝑤,𝑣,𝑏)   𝐷(𝑥,𝑤,𝑣,𝑠,𝑟,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑧,𝑤,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝑍(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem4
StepHypRef Expression
1 eqid 2738 . . . . . . . . . . 11 𝑍 = 𝑍
2 eqid 2738 . . . . . . . . . . 11 (𝑊𝑍) = (𝑊𝑍)
31, 2pm3.2i 471 . . . . . . . . . 10 (𝑍 = 𝑍 ∧ (𝑊𝑍) = (𝑊𝑍))
4 pwfseqlem4.w . . . . . . . . . . 11 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))}
5 pwfseqlem4.g . . . . . . . . . . . . 13 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
6 omex 9401 . . . . . . . . . . . . . 14 ω ∈ V
7 ovex 7308 . . . . . . . . . . . . . 14 (𝐴m 𝑛) ∈ V
86, 7iunex 7811 . . . . . . . . . . . . 13 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
9 f1dmex 7799 . . . . . . . . . . . . 13 ((𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V)
105, 8, 9sylancl 586 . . . . . . . . . . . 12 (𝜑 → 𝒫 𝐴 ∈ V)
11 pwexb 7616 . . . . . . . . . . . 12 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
1210, 11sylibr 233 . . . . . . . . . . 11 (𝜑𝐴 ∈ V)
13 pwfseqlem4.x . . . . . . . . . . . 12 (𝜑𝑋𝐴)
14 pwfseqlem4.h . . . . . . . . . . . 12 (𝜑𝐻:ω–1-1-onto𝑋)
15 pwfseqlem4.ps . . . . . . . . . . . 12 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
16 pwfseqlem4.k . . . . . . . . . . . 12 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
17 pwfseqlem4.d . . . . . . . . . . . 12 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
18 pwfseqlem4.f . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
195, 13, 14, 15, 16, 17, 18pwfseqlem4a 10417 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
20 pwfseqlem4.z . . . . . . . . . . 11 𝑍 = dom 𝑊
214, 12, 19, 20fpwwe2 10399 . . . . . . . . . 10 (𝜑 → ((𝑍𝑊(𝑊𝑍) ∧ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍) ↔ (𝑍 = 𝑍 ∧ (𝑊𝑍) = (𝑊𝑍))))
223, 21mpbiri 257 . . . . . . . . 9 (𝜑 → (𝑍𝑊(𝑊𝑍) ∧ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍))
2322simprd 496 . . . . . . . 8 (𝜑 → (𝑍𝐹(𝑊𝑍)) ∈ 𝑍)
2422simpld 495 . . . . . . . . . . . . 13 (𝜑𝑍𝑊(𝑊𝑍))
254, 12fpwwe2lem2 10388 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝑊(𝑊𝑍) ↔ ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))))
2624, 25mpbid 231 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)))
2726simpld 495 . . . . . . . . . . 11 (𝜑 → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)))
2827simpld 495 . . . . . . . . . 10 (𝜑𝑍𝐴)
2912, 28ssexd 5248 . . . . . . . . 9 (𝜑𝑍 ∈ V)
30 sseq1 3946 . . . . . . . . . . . . . 14 (𝑎 = 𝑍 → (𝑎𝐴𝑍𝐴))
31 id 22 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑍𝑎 = 𝑍)
3231sqxpeqd 5621 . . . . . . . . . . . . . . 15 (𝑎 = 𝑍 → (𝑎 × 𝑎) = (𝑍 × 𝑍))
3332sseq2d 3953 . . . . . . . . . . . . . 14 (𝑎 = 𝑍 → ((𝑊𝑍) ⊆ (𝑎 × 𝑎) ↔ (𝑊𝑍) ⊆ (𝑍 × 𝑍)))
34 weeq2 5578 . . . . . . . . . . . . . 14 (𝑎 = 𝑍 → ((𝑊𝑍) We 𝑎 ↔ (𝑊𝑍) We 𝑍))
3530, 33, 343anbi123d 1435 . . . . . . . . . . . . 13 (𝑎 = 𝑍 → ((𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎) ↔ (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍)))
3635anbi2d 629 . . . . . . . . . . . 12 (𝑎 = 𝑍 → ((𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)) ↔ (𝜑 ∧ (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))))
37 id 22 . . . . . . . . . . . . . . . 16 ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
38373expa 1117 . . . . . . . . . . . . . . 15 (((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ (𝑊𝑍) We 𝑍) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
3938adantrr 714 . . . . . . . . . . . . . 14 (((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
4026, 39syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
4140pm4.71i 560 . . . . . . . . . . . 12 (𝜑 ↔ (𝜑 ∧ (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍)))
4236, 41bitr4di 289 . . . . . . . . . . 11 (𝑎 = 𝑍 → ((𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)) ↔ 𝜑))
43 oveq1 7282 . . . . . . . . . . . . 13 (𝑎 = 𝑍 → (𝑎𝐹(𝑊𝑍)) = (𝑍𝐹(𝑊𝑍)))
4443, 31eleq12d 2833 . . . . . . . . . . . 12 (𝑎 = 𝑍 → ((𝑎𝐹(𝑊𝑍)) ∈ 𝑎 ↔ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍))
45 breq1 5077 . . . . . . . . . . . 12 (𝑎 = 𝑍 → (𝑎 ≺ ω ↔ 𝑍 ≺ ω))
4644, 45imbi12d 345 . . . . . . . . . . 11 (𝑎 = 𝑍 → (((𝑎𝐹(𝑊𝑍)) ∈ 𝑎𝑎 ≺ ω) ↔ ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω)))
4742, 46imbi12d 345 . . . . . . . . . 10 (𝑎 = 𝑍 → (((𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)) → ((𝑎𝐹(𝑊𝑍)) ∈ 𝑎𝑎 ≺ ω)) ↔ (𝜑 → ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω))))
48 fvex 6787 . . . . . . . . . . 11 (𝑊𝑍) ∈ V
49 sseq1 3946 . . . . . . . . . . . . . 14 (𝑠 = (𝑊𝑍) → (𝑠 ⊆ (𝑎 × 𝑎) ↔ (𝑊𝑍) ⊆ (𝑎 × 𝑎)))
50 weeq1 5577 . . . . . . . . . . . . . 14 (𝑠 = (𝑊𝑍) → (𝑠 We 𝑎 ↔ (𝑊𝑍) We 𝑎))
5149, 503anbi23d 1438 . . . . . . . . . . . . 13 (𝑠 = (𝑊𝑍) → ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ↔ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)))
5251anbi2d 629 . . . . . . . . . . . 12 (𝑠 = (𝑊𝑍) → ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) ↔ (𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎))))
53 oveq2 7283 . . . . . . . . . . . . . 14 (𝑠 = (𝑊𝑍) → (𝑎𝐹𝑠) = (𝑎𝐹(𝑊𝑍)))
5453eleq1d 2823 . . . . . . . . . . . . 13 (𝑠 = (𝑊𝑍) → ((𝑎𝐹𝑠) ∈ 𝑎 ↔ (𝑎𝐹(𝑊𝑍)) ∈ 𝑎))
5554imbi1d 342 . . . . . . . . . . . 12 (𝑠 = (𝑊𝑍) → (((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω) ↔ ((𝑎𝐹(𝑊𝑍)) ∈ 𝑎𝑎 ≺ ω)))
5652, 55imbi12d 345 . . . . . . . . . . 11 (𝑠 = (𝑊𝑍) → (((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω)) ↔ ((𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)) → ((𝑎𝐹(𝑊𝑍)) ∈ 𝑎𝑎 ≺ ω))))
57 omelon 9404 . . . . . . . . . . . . . . 15 ω ∈ On
58 onenon 9707 . . . . . . . . . . . . . . 15 (ω ∈ On → ω ∈ dom card)
5957, 58ax-mp 5 . . . . . . . . . . . . . 14 ω ∈ dom card
60 simpr3 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎)
616019.8ad 2175 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎)
62 ween 9791 . . . . . . . . . . . . . . 15 (𝑎 ∈ dom card ↔ ∃𝑠 𝑠 We 𝑎)
6361, 62sylibr 233 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card)
64 domtri2 9747 . . . . . . . . . . . . . 14 ((ω ∈ dom card ∧ 𝑎 ∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
6559, 63, 64sylancr 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
66 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑟(𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))
67 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑟𝑎
68 nfmpo2 7356 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
6918, 68nfcxfr 2905 . . . . . . . . . . . . . . . . . . 19 𝑟𝐹
70 nfcv 2907 . . . . . . . . . . . . . . . . . . 19 𝑟𝑠
7167, 69, 70nfov 7305 . . . . . . . . . . . . . . . . . 18 𝑟(𝑎𝐹𝑠)
7271nfel1 2923 . . . . . . . . . . . . . . . . 17 𝑟(𝑎𝐹𝑠) ∈ (𝐴𝑎)
7366, 72nfim 1899 . . . . . . . . . . . . . . . 16 𝑟((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
74 sseq1 3946 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
75 weeq1 5577 . . . . . . . . . . . . . . . . . . . 20 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
7674, 753anbi23d 1438 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑠 → ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)))
7776anbi1d 630 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))
7877anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))))
79 oveq2 7283 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
8079eleq1d 2823 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴𝑎)))
8178, 80imbi12d 345 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))))
82 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑥(𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))
83 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑎
84 nfmpo1 7355 . . . . . . . . . . . . . . . . . . . . 21 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
8518, 84nfcxfr 2905 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
86 nfcv 2907 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑟
8783, 85, 86nfov 7305 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑎𝐹𝑟)
8887nfel1 2923 . . . . . . . . . . . . . . . . . 18 𝑥(𝑎𝐹𝑟) ∈ (𝐴𝑎)
8982, 88nfim 1899 . . . . . . . . . . . . . . . . 17 𝑥((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
90 sseq1 3946 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
91 xpeq12 5614 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 = 𝑎𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
9291anidms 567 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎))
9392sseq2d 3953 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎)))
94 weeq2 5578 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
9590, 93, 943anbi123d 1435 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎)))
96 breq2 5078 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎))
9795, 96anbi12d 631 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
9815, 97bitrid 282 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
9998anbi2d 629 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))))
100 oveq1 7282 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
101 difeq2 4051 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
102100, 101eleq12d 2833 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴𝑎)))
10399, 102imbi12d 345 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))))
1045, 13, 14, 15, 16, 17, 18pwfseqlem3 10416 . . . . . . . . . . . . . . . . 17 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
10589, 103, 104chvarfv 2233 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
10673, 81, 105chvarfv 2233 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
107106eldifbd 3900 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → ¬ (𝑎𝐹𝑠) ∈ 𝑎)
108107expr 457 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → ¬ (𝑎𝐹𝑠) ∈ 𝑎))
10965, 108sylbird 259 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → ¬ (𝑎𝐹𝑠) ∈ 𝑎))
110109con4d 115 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω))
11148, 56, 110vtocl 3498 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴 ∧ (𝑊𝑍) ⊆ (𝑎 × 𝑎) ∧ (𝑊𝑍) We 𝑎)) → ((𝑎𝐹(𝑊𝑍)) ∈ 𝑎𝑎 ≺ ω))
11247, 111vtoclg 3505 . . . . . . . . 9 (𝑍 ∈ V → (𝜑 → ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω)))
11329, 112mpcom 38 . . . . . . . 8 (𝜑 → ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω))
11423, 113mpd 15 . . . . . . 7 (𝜑𝑍 ≺ ω)
115 isfinite 9410 . . . . . . 7 (𝑍 ∈ Fin ↔ 𝑍 ≺ ω)
116114, 115sylibr 233 . . . . . 6 (𝜑𝑍 ∈ Fin)
1175, 13, 14, 15, 16, 17, 18pwfseqlem2 10415 . . . . . 6 ((𝑍 ∈ Fin ∧ (𝑊𝑍) ∈ V) → (𝑍𝐹(𝑊𝑍)) = (𝐻‘(card‘𝑍)))
118116, 48, 117sylancl 586 . . . . 5 (𝜑 → (𝑍𝐹(𝑊𝑍)) = (𝐻‘(card‘𝑍)))
119118, 23eqeltrrd 2840 . . . 4 (𝜑 → (𝐻‘(card‘𝑍)) ∈ 𝑍)
1204, 12, 24fpwwe2lem3 10389 . . . . . . . . . 10 ((𝜑 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍)))
121119, 120mpdan 684 . . . . . . . . 9 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍)))
122 cnvimass 5989 . . . . . . . . . . . 12 ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ dom (𝑊𝑍)
12327simprd 496 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝑍) ⊆ (𝑍 × 𝑍))
124 dmss 5811 . . . . . . . . . . . . . 14 ((𝑊𝑍) ⊆ (𝑍 × 𝑍) → dom (𝑊𝑍) ⊆ dom (𝑍 × 𝑍))
125123, 124syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑊𝑍) ⊆ dom (𝑍 × 𝑍))
126 dmxpss 6074 . . . . . . . . . . . . 13 dom (𝑍 × 𝑍) ⊆ 𝑍
127125, 126sstrdi 3933 . . . . . . . . . . . 12 (𝜑 → dom (𝑊𝑍) ⊆ 𝑍)
128122, 127sstrid 3932 . . . . . . . . . . 11 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍)
129116, 128ssfid 9042 . . . . . . . . . 10 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin)
13048inex1 5241 . . . . . . . . . 10 ((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V
1315, 13, 14, 15, 16, 17, 18pwfseqlem2 10415 . . . . . . . . . 10 ((((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin ∧ ((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V) → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
132129, 130, 131sylancl 586 . . . . . . . . 9 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
133121, 132eqtr3d 2780 . . . . . . . 8 (𝜑 → (𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
134 f1of1 6715 . . . . . . . . . 10 (𝐻:ω–1-1-onto𝑋𝐻:ω–1-1𝑋)
13514, 134syl 17 . . . . . . . . 9 (𝜑𝐻:ω–1-1𝑋)
136 ficardom 9719 . . . . . . . . . 10 (𝑍 ∈ Fin → (card‘𝑍) ∈ ω)
137116, 136syl 17 . . . . . . . . 9 (𝜑 → (card‘𝑍) ∈ ω)
138 ficardom 9719 . . . . . . . . . 10 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)
139129, 138syl 17 . . . . . . . . 9 (𝜑 → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)
140 f1fveq 7135 . . . . . . . . 9 ((𝐻:ω–1-1𝑋 ∧ ((card‘𝑍) ∈ ω ∧ (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)) → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
141135, 137, 139, 140syl12anc 834 . . . . . . . 8 (𝜑 → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
142133, 141mpbid 231 . . . . . . 7 (𝜑 → (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))
143142eqcomd 2744 . . . . . 6 (𝜑 → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍))
144 finnum 9706 . . . . . . . 8 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card)
145129, 144syl 17 . . . . . . 7 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card)
146 finnum 9706 . . . . . . . 8 (𝑍 ∈ Fin → 𝑍 ∈ dom card)
147116, 146syl 17 . . . . . . 7 (𝜑𝑍 ∈ dom card)
148 carden2 9745 . . . . . . 7 ((((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card ∧ 𝑍 ∈ dom card) → ((card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
149145, 147, 148syl2anc 584 . . . . . 6 (𝜑 → ((card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
150143, 149mpbid 231 . . . . 5 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
151 dfpss2 4020 . . . . . . . 8 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 ∧ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
152151baib 536 . . . . . . 7 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
153128, 152syl 17 . . . . . 6 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
154 php3 8995 . . . . . . . . 9 ((𝑍 ∈ Fin ∧ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍)
155 sdomnen 8769 . . . . . . . . 9 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
156154, 155syl 17 . . . . . . . 8 ((𝑍 ∈ Fin ∧ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
157156ex 413 . . . . . . 7 (𝑍 ∈ Fin → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
158116, 157syl 17 . . . . . 6 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
159153, 158sylbird 259 . . . . 5 (𝜑 → (¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
160150, 159mt4d 117 . . . 4 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)
161119, 160eleqtrrd 2842 . . 3 (𝜑 → (𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))
162 fvex 6787 . . . 4 (𝐻‘(card‘𝑍)) ∈ V
163162eliniseg 6002 . . . 4 ((𝐻‘(card‘𝑍)) ∈ V → ((𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍))))
164162, 163ax-mp 5 . . 3 ((𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
165161, 164sylib 217 . 2 (𝜑 → (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
16626simprd 496 . . . . 5 (𝜑 → ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))
167166simpld 495 . . . 4 (𝜑 → (𝑊𝑍) We 𝑍)
168 weso 5580 . . . 4 ((𝑊𝑍) We 𝑍 → (𝑊𝑍) Or 𝑍)
169167, 168syl 17 . . 3 (𝜑 → (𝑊𝑍) Or 𝑍)
170 sonr 5526 . . 3 (((𝑊𝑍) Or 𝑍 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ¬ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
171169, 119, 170syl2anc 584 . 2 (𝜑 → ¬ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
172165, 171pm2.65i 193 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  [wsbc 3716  cdif 3884  cin 3886  wss 3887  wpss 3888  ifcif 4459  𝒫 cpw 4533  {csn 4561   cuni 4839   cint 4879   ciun 4924   class class class wbr 5074  {copab 5136   Or wor 5502   We wwe 5543   × cxp 5587  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592  Oncon0 6266  1-1wf1 6430  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  ωcom 7712  m cmap 8615  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  cardccrd 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697
This theorem is referenced by:  pwfseqlem5  10419
  Copyright terms: Public domain W3C validator