Proof of Theorem pwfseqlem4
Step | Hyp | Ref
| Expression |
1 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢ 𝑍 = 𝑍 |
2 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢ (𝑊‘𝑍) = (𝑊‘𝑍) |
3 | 1, 2 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)) |
4 | | pwfseqlem4.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} |
5 | | pwfseqlem4.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
6 | | omex 9712 |
. . . . . . . . . . . . . . . 16
⊢ ω
∈ V |
7 | | ovex 7481 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ↑m 𝑛) ∈ V |
8 | 6, 7 | iunex 8009 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V |
9 | | f1dmex 7997 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∧ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V) |
10 | 5, 8, 9 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
11 | | pwexb 7801 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
12 | 10, 11 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ V) |
13 | | pwfseqlem4.x |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
14 | | pwfseqlem4.h |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) |
15 | | pwfseqlem4.ps |
. . . . . . . . . . . . . 14
⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) |
16 | | pwfseqlem4.k |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
17 | | pwfseqlem4.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
18 | | pwfseqlem4.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
19 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem4a 10730 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) |
20 | | pwfseqlem4.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = ∪
dom 𝑊 |
21 | 4, 12, 19, 20 | fpwwe2 10712 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) ↔ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)))) |
22 | 3, 21 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
23 | 22 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍𝑊(𝑊‘𝑍)) |
24 | 4, 12 | fpwwe2lem2 10701 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ↔ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)))) |
25 | 23, 24 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))) |
26 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
27 | 26 | 3expa 1118 |
. . . . . . . . . 10
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
28 | 27 | adantrr 716 |
. . . . . . . . 9
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
29 | 25, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
30 | 22 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) |
31 | 25 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
32 | 31 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
33 | 12, 32 | ssexd 5342 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ V) |
34 | | fvexd 6935 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊‘𝑍) ∈ V) |
35 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → 𝑎 = 𝑍) |
36 | 35 | sseq1d 4040 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 ⊆ 𝐴 ↔ 𝑍 ⊆ 𝐴)) |
37 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → 𝑠 = (𝑊‘𝑍)) |
38 | 35 | sqxpeqd 5732 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 × 𝑎) = (𝑍 × 𝑍)) |
39 | 37, 38 | sseq12d 4042 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑠 ⊆ (𝑎 × 𝑎) ↔ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
40 | 37, 35 | weeq12d 5689 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑠 We 𝑎 ↔ (𝑊‘𝑍) We 𝑍)) |
41 | 36, 39, 40 | 3anbi123d 1436 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ↔ (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍))) |
42 | | oveq12 7457 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎𝐹𝑠) = (𝑍𝐹(𝑊‘𝑍))) |
43 | 42, 35 | eleq12d 2838 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → ((𝑎𝐹𝑠) ∈ 𝑎 ↔ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
44 | 35 | breq1d 5176 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 ≺ ω ↔ 𝑍 ≺ ω)) |
45 | 43, 44 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω) ↔ ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
46 | 41, 45 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) ↔ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω)))) |
47 | | omelon 9715 |
. . . . . . . . . . . . . 14
⊢ ω
∈ On |
48 | | onenon 10018 |
. . . . . . . . . . . . . 14
⊢ (ω
∈ On → ω ∈ dom card) |
49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ω
∈ dom card |
50 | | simpr3 1196 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎) |
51 | 50 | 19.8ad 2183 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎) |
52 | | ween 10104 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ dom card ↔
∃𝑠 𝑠 We 𝑎) |
53 | 51, 52 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card) |
54 | | domtri2 10058 |
. . . . . . . . . . . . 13
⊢ ((ω
∈ dom card ∧ 𝑎
∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
55 | 49, 53, 54 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
56 | | nfv 1913 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) |
57 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝑎 |
58 | | nfmpo2 7531 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
59 | 18, 58 | nfcxfr 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝐹 |
60 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝑠 |
61 | 57, 59, 60 | nfov 7478 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟(𝑎𝐹𝑠) |
62 | 61 | nfel1 2925 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟(𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎) |
63 | 56, 62 | nfim 1895 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑟((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
64 | | sseq1 4034 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎))) |
65 | | weeq1 5687 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑠 → (𝑟 We 𝑎 ↔ 𝑠 We 𝑎)) |
66 | 64, 65 | 3anbi23d 1439 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎))) |
67 | 66 | anbi1d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → (((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))) |
68 | 67 | anbi2d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))) |
69 | | oveq2 7456 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠)) |
70 | 69 | eleq1d 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎))) |
71 | 68, 70 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)))) |
72 | | nfv 1913 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) |
73 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝑎 |
74 | | nfmpo1 7530 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
75 | 18, 74 | nfcxfr 2906 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
76 | | nfcv 2908 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝑟 |
77 | 73, 75, 76 | nfov 7478 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝑎𝐹𝑟) |
78 | 77 | nfel1 2925 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) |
79 | 72, 78 | nfim 1895 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
80 | | sseq1 4034 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴)) |
81 | | xpeq12 5725 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 = 𝑎 ∧ 𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
82 | 81 | anidms 566 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
83 | 82 | sseq2d 4041 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎))) |
84 | | weeq2 5688 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑎)) |
85 | 80, 83, 84 | 3anbi123d 1436 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎))) |
86 | | breq2 5170 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎)) |
87 | 85, 86 | anbi12d 631 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
88 | 15, 87 | bitrid 283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
89 | 88 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))) |
90 | | oveq1 7455 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟)) |
91 | | difeq2 4143 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) |
92 | 90, 91 | eleq12d 2838 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎))) |
93 | 89, 92 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)))) |
94 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem3 10729 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) |
95 | 79, 93, 94 | chvarfv 2241 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
96 | 63, 71, 95 | chvarfv 2241 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
97 | 96 | eldifbd 3989 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → ¬ (𝑎𝐹𝑠) ∈ 𝑎) |
98 | 97 | expr 456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
99 | 55, 98 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
100 | 99 | con4d 115 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) |
101 | 100 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω))) |
102 | 33, 34, 46, 101 | vtocl2d 3574 |
. . . . . . . 8
⊢ (𝜑 → ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
103 | 29, 30, 102 | mp2d 49 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ≺ ω) |
104 | | isfinite 9721 |
. . . . . . 7
⊢ (𝑍 ∈ Fin ↔ 𝑍 ≺
ω) |
105 | 103, 104 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ Fin) |
106 | | fvex 6933 |
. . . . . 6
⊢ (𝑊‘𝑍) ∈ V |
107 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10728 |
. . . . . 6
⊢ ((𝑍 ∈ Fin ∧ (𝑊‘𝑍) ∈ V) → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
108 | 105, 106,
107 | sylancl 585 |
. . . . 5
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
109 | 108, 30 | eqeltrrd 2845 |
. . . 4
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ 𝑍) |
110 | 4, 12, 23 | fpwwe2lem3 10702 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
111 | 109, 110 | mpdan 686 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
112 | | cnvimass 6111 |
. . . . . . . . . . . 12
⊢ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ dom (𝑊‘𝑍) |
113 | 31 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) |
114 | | dmss 5927 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑍) ⊆ (𝑍 × 𝑍) → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
115 | 113, 114 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
116 | | dmxpss 6202 |
. . . . . . . . . . . . 13
⊢ dom
(𝑍 × 𝑍) ⊆ 𝑍 |
117 | 115, 116 | sstrdi 4021 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ 𝑍) |
118 | 112, 117 | sstrid 4020 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍) |
119 | 105, 118 | ssfid 9329 |
. . . . . . . . . 10
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin) |
120 | 106 | inex1 5335 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V |
121 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10728 |
. . . . . . . . . 10
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin ∧ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
122 | 119, 120,
121 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
123 | 111, 122 | eqtr3d 2782 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
124 | | f1of1 6861 |
. . . . . . . . . 10
⊢ (𝐻:ω–1-1-onto→𝑋 → 𝐻:ω–1-1→𝑋) |
125 | 14, 124 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:ω–1-1→𝑋) |
126 | | ficardom 10030 |
. . . . . . . . . 10
⊢ (𝑍 ∈ Fin →
(card‘𝑍) ∈
ω) |
127 | 105, 126 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘𝑍) ∈
ω) |
128 | | ficardom 10030 |
. . . . . . . . . 10
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
129 | 119, 128 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
130 | | f1fveq 7299 |
. . . . . . . . 9
⊢ ((𝐻:ω–1-1→𝑋 ∧ ((card‘𝑍) ∈ ω ∧ (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)) → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
131 | 125, 127,
129, 130 | syl12anc 836 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
132 | 123, 131 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) |
133 | 132 | eqcomd 2746 |
. . . . . 6
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍)) |
134 | | finnum 10017 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
135 | 119, 134 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
136 | | finnum 10017 |
. . . . . . . 8
⊢ (𝑍 ∈ Fin → 𝑍 ∈ dom
card) |
137 | 105, 136 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ dom card) |
138 | | carden2 10056 |
. . . . . . 7
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card ∧ 𝑍 ∈ dom card) → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
139 | 135, 137,
138 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
140 | 133, 139 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
141 | | dfpss2 4111 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 ∧ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
142 | 141 | baib 535 |
. . . . . . 7
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
143 | 118, 142 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
144 | | php3 9275 |
. . . . . . . . 9
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍) |
145 | | sdomnen 9041 |
. . . . . . . . 9
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
146 | 144, 145 | syl 17 |
. . . . . . . 8
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
147 | 146 | ex 412 |
. . . . . . 7
⊢ (𝑍 ∈ Fin → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
148 | 105, 147 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
149 | 143, 148 | sylbird 260 |
. . . . 5
⊢ (𝜑 → (¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
150 | 140, 149 | mt4d 117 |
. . . 4
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍) |
151 | 109, 150 | eleqtrrd 2847 |
. . 3
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) |
152 | | fvex 6933 |
. . . 4
⊢ (𝐻‘(card‘𝑍)) ∈ V |
153 | 152 | eliniseg 6124 |
. . . 4
⊢ ((𝐻‘(card‘𝑍)) ∈ V → ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍)))) |
154 | 152, 153 | ax-mp 5 |
. . 3
⊢ ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
155 | 151, 154 | sylib 218 |
. 2
⊢ (𝜑 → (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
156 | 25 | simprd 495 |
. . . . 5
⊢ (𝜑 → ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) |
157 | 156 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑊‘𝑍) We 𝑍) |
158 | | weso 5691 |
. . . 4
⊢ ((𝑊‘𝑍) We 𝑍 → (𝑊‘𝑍) Or 𝑍) |
159 | 157, 158 | syl 17 |
. . 3
⊢ (𝜑 → (𝑊‘𝑍) Or 𝑍) |
160 | | sonr 5632 |
. . 3
⊢ (((𝑊‘𝑍) Or 𝑍 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
161 | 159, 109,
160 | syl2anc 583 |
. 2
⊢ (𝜑 → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
162 | 155, 161 | pm2.65i 194 |
1
⊢ ¬
𝜑 |