Proof of Theorem pwfseqlem4
| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ 𝑍 = 𝑍 |
| 2 | | eqid 2736 |
. . . . . . . . . . . . 13
⊢ (𝑊‘𝑍) = (𝑊‘𝑍) |
| 3 | 1, 2 | pm3.2i 470 |
. . . . . . . . . . . 12
⊢ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)) |
| 4 | | pwfseqlem4.w |
. . . . . . . . . . . . 13
⊢ 𝑊 = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏 ∈ 𝑎 [(◡𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))} |
| 5 | | pwfseqlem4.g |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛)) |
| 6 | | omex 9662 |
. . . . . . . . . . . . . . . 16
⊢ ω
∈ V |
| 7 | | ovex 7443 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ↑m 𝑛) ∈ V |
| 8 | 6, 7 | iunex 7972 |
. . . . . . . . . . . . . . 15
⊢ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V |
| 9 | | f1dmex 7960 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺:𝒫 𝐴–1-1→∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∧ ∪ 𝑛 ∈ ω (𝐴 ↑m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V) |
| 10 | 5, 8, 9 | sylancl 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝒫 𝐴 ∈ V) |
| 11 | | pwexb 7765 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| 12 | 10, 11 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ V) |
| 13 | | pwfseqlem4.x |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ 𝐴) |
| 14 | | pwfseqlem4.h |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐻:ω–1-1-onto→𝑋) |
| 15 | | pwfseqlem4.ps |
. . . . . . . . . . . . . 14
⊢ (𝜓 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥)) |
| 16 | | pwfseqlem4.k |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝜓) → 𝐾:∪ 𝑛 ∈ ω (𝑥 ↑m 𝑛)–1-1→𝑥) |
| 17 | | pwfseqlem4.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = (𝐺‘{𝑤 ∈ 𝑥 ∣ ((◡𝐾‘𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (◡𝐺‘(◡𝐾‘𝑤)))}) |
| 18 | | pwfseqlem4.f |
. . . . . . . . . . . . . 14
⊢ 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
| 19 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem4a 10680 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴) |
| 20 | | pwfseqlem4.z |
. . . . . . . . . . . . 13
⊢ 𝑍 = ∪
dom 𝑊 |
| 21 | 4, 12, 19, 20 | fpwwe2 10662 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) ↔ (𝑍 = 𝑍 ∧ (𝑊‘𝑍) = (𝑊‘𝑍)))) |
| 22 | 3, 21 | mpbiri 258 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ∧ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
| 23 | 22 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍𝑊(𝑊‘𝑍)) |
| 24 | 4, 12 | fpwwe2lem2 10651 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑍𝑊(𝑊‘𝑍) ↔ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)))) |
| 25 | 23, 24 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))) |
| 26 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
| 27 | 26 | 3expa 1118 |
. . . . . . . . . 10
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ (𝑊‘𝑍) We 𝑍) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
| 28 | 27 | adantrr 717 |
. . . . . . . . 9
⊢ (((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
| 29 | 25, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍)) |
| 30 | 22 | simprd 495 |
. . . . . . . 8
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍) |
| 31 | 25 | simpld 494 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
| 32 | 31 | simpld 494 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ 𝐴) |
| 33 | 12, 32 | ssexd 5299 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ V) |
| 34 | | fvexd 6896 |
. . . . . . . . 9
⊢ (𝜑 → (𝑊‘𝑍) ∈ V) |
| 35 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → 𝑎 = 𝑍) |
| 36 | 35 | sseq1d 3995 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 ⊆ 𝐴 ↔ 𝑍 ⊆ 𝐴)) |
| 37 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → 𝑠 = (𝑊‘𝑍)) |
| 38 | 35 | sqxpeqd 5691 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 × 𝑎) = (𝑍 × 𝑍)) |
| 39 | 37, 38 | sseq12d 3997 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑠 ⊆ (𝑎 × 𝑎) ↔ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍))) |
| 40 | 37, 35 | weeq12d 5648 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑠 We 𝑎 ↔ (𝑊‘𝑍) We 𝑍)) |
| 41 | 36, 39, 40 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ↔ (𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍))) |
| 42 | | oveq12 7419 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎𝐹𝑠) = (𝑍𝐹(𝑊‘𝑍))) |
| 43 | 42, 35 | eleq12d 2829 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → ((𝑎𝐹𝑠) ∈ 𝑎 ↔ (𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍)) |
| 44 | 35 | breq1d 5134 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (𝑎 ≺ ω ↔ 𝑍 ≺ ω)) |
| 45 | 43, 44 | imbi12d 344 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω) ↔ ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
| 46 | 41, 45 | imbi12d 344 |
. . . . . . . . 9
⊢ ((𝑎 = 𝑍 ∧ 𝑠 = (𝑊‘𝑍)) → (((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) ↔ ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω)))) |
| 47 | | omelon 9665 |
. . . . . . . . . . . . . 14
⊢ ω
∈ On |
| 48 | | onenon 9968 |
. . . . . . . . . . . . . 14
⊢ (ω
∈ On → ω ∈ dom card) |
| 49 | 47, 48 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ω
∈ dom card |
| 50 | | simpr3 1197 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎) |
| 51 | 50 | 19.8ad 2183 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎) |
| 52 | | ween 10054 |
. . . . . . . . . . . . . 14
⊢ (𝑎 ∈ dom card ↔
∃𝑠 𝑠 We 𝑎) |
| 53 | 51, 52 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card) |
| 54 | | domtri2 10008 |
. . . . . . . . . . . . 13
⊢ ((ω
∈ dom card ∧ 𝑎
∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
| 55 | 49, 53, 54 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω)) |
| 56 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) |
| 57 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝑎 |
| 58 | | nfmpo2 7493 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
| 59 | 18, 58 | nfcxfr 2897 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝐹 |
| 60 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑟𝑠 |
| 61 | 57, 59, 60 | nfov 7440 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑟(𝑎𝐹𝑠) |
| 62 | 61 | nfel1 2916 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑟(𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎) |
| 63 | 56, 62 | nfim 1896 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑟((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
| 64 | | sseq1 3989 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎))) |
| 65 | | weeq1 5646 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑟 = 𝑠 → (𝑟 We 𝑎 ↔ 𝑠 We 𝑎)) |
| 66 | 64, 65 | 3anbi23d 1441 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑟 = 𝑠 → ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎))) |
| 67 | 66 | anbi1d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → (((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))) |
| 68 | 67 | anbi2d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))) |
| 69 | | oveq2 7418 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠)) |
| 70 | 69 | eleq1d 2820 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎))) |
| 71 | 68, 70 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)))) |
| 72 | | nfv 1914 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) |
| 73 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝑎 |
| 74 | | nfmpo1 7492 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷‘∩ {𝑧 ∈ ω ∣ ¬
(𝐷‘𝑧) ∈ 𝑥}))) |
| 75 | 18, 74 | nfcxfr 2897 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝐹 |
| 76 | | nfcv 2899 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑥𝑟 |
| 77 | 73, 75, 76 | nfov 7440 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝑎𝐹𝑟) |
| 78 | 77 | nfel1 2916 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥(𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎) |
| 79 | 72, 78 | nfim 1896 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
| 80 | | sseq1 3989 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴)) |
| 81 | | xpeq12 5684 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑥 = 𝑎 ∧ 𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
| 82 | 81 | anidms 566 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎)) |
| 83 | 82 | sseq2d 3996 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎))) |
| 84 | | weeq2 5647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑎 → (𝑟 We 𝑥 ↔ 𝑟 We 𝑎)) |
| 85 | 80, 83, 84 | 3anbi123d 1438 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎))) |
| 86 | | breq2 5128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎)) |
| 87 | 85, 86 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → (((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
| 88 | 15, 87 | bitrid 283 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))) |
| 89 | 88 | anbi2d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))) |
| 90 | | oveq1 7417 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟)) |
| 91 | | difeq2 4100 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑎)) |
| 92 | 90, 91 | eleq12d 2829 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎))) |
| 93 | 89, 92 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑎 → (((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) ↔ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)))) |
| 94 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem3 10679 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝜓) → (𝑥𝐹𝑟) ∈ (𝐴 ∖ 𝑥)) |
| 95 | 79, 93, 94 | chvarfv 2241 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴 ∖ 𝑎)) |
| 96 | 63, 71, 95 | chvarfv 2241 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴 ∖ 𝑎)) |
| 97 | 96 | eldifbd 3944 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → ¬ (𝑎𝐹𝑠) ∈ 𝑎) |
| 98 | 97 | expr 456 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
| 99 | 55, 98 | sylbird 260 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → ¬ (𝑎𝐹𝑠) ∈ 𝑎)) |
| 100 | 99 | con4d 115 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω)) |
| 101 | 100 | ex 412 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎 → 𝑎 ≺ ω))) |
| 102 | 33, 34, 46, 101 | vtocl2d 3546 |
. . . . . . . 8
⊢ (𝜑 → ((𝑍 ⊆ 𝐴 ∧ (𝑊‘𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊‘𝑍) We 𝑍) → ((𝑍𝐹(𝑊‘𝑍)) ∈ 𝑍 → 𝑍 ≺ ω))) |
| 103 | 29, 30, 102 | mp2d 49 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ≺ ω) |
| 104 | | isfinite 9671 |
. . . . . . 7
⊢ (𝑍 ∈ Fin ↔ 𝑍 ≺
ω) |
| 105 | 103, 104 | sylibr 234 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ Fin) |
| 106 | | fvex 6894 |
. . . . . 6
⊢ (𝑊‘𝑍) ∈ V |
| 107 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10678 |
. . . . . 6
⊢ ((𝑍 ∈ Fin ∧ (𝑊‘𝑍) ∈ V) → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
| 108 | 105, 106,
107 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑍𝐹(𝑊‘𝑍)) = (𝐻‘(card‘𝑍))) |
| 109 | 108, 30 | eqeltrrd 2836 |
. . . 4
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ 𝑍) |
| 110 | 4, 12, 23 | fpwwe2lem3 10652 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
| 111 | 109, 110 | mpdan 687 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍))) |
| 112 | | cnvimass 6074 |
. . . . . . . . . . . 12
⊢ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ dom (𝑊‘𝑍) |
| 113 | 31 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑊‘𝑍) ⊆ (𝑍 × 𝑍)) |
| 114 | | dmss 5887 |
. . . . . . . . . . . . . 14
⊢ ((𝑊‘𝑍) ⊆ (𝑍 × 𝑍) → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
| 115 | 113, 114 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ dom (𝑍 × 𝑍)) |
| 116 | | dmxpss 6165 |
. . . . . . . . . . . . 13
⊢ dom
(𝑍 × 𝑍) ⊆ 𝑍 |
| 117 | 115, 116 | sstrdi 3976 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝑊‘𝑍) ⊆ 𝑍) |
| 118 | 112, 117 | sstrid 3975 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍) |
| 119 | 105, 118 | ssfid 9278 |
. . . . . . . . . 10
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin) |
| 120 | 106 | inex1 5292 |
. . . . . . . . . 10
⊢ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V |
| 121 | 5, 13, 14, 15, 16, 17, 18 | pwfseqlem2 10678 |
. . . . . . . . . 10
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin ∧ ((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V) → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
| 122 | 119, 120,
121 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊‘𝑍) ∩ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) × (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
| 123 | 111, 122 | eqtr3d 2773 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
| 124 | | f1of1 6822 |
. . . . . . . . . 10
⊢ (𝐻:ω–1-1-onto→𝑋 → 𝐻:ω–1-1→𝑋) |
| 125 | 14, 124 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐻:ω–1-1→𝑋) |
| 126 | | ficardom 9980 |
. . . . . . . . . 10
⊢ (𝑍 ∈ Fin →
(card‘𝑍) ∈
ω) |
| 127 | 105, 126 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘𝑍) ∈
ω) |
| 128 | | ficardom 9980 |
. . . . . . . . . 10
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
| 129 | 119, 128 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω) |
| 130 | | f1fveq 7260 |
. . . . . . . . 9
⊢ ((𝐻:ω–1-1→𝑋 ∧ ((card‘𝑍) ∈ ω ∧ (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)) → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
| 131 | 125, 127,
129, 130 | syl12anc 836 |
. . . . . . . 8
⊢ (𝜑 → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})))) |
| 132 | 123, 131 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → (card‘𝑍) = (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}))) |
| 133 | 132 | eqcomd 2742 |
. . . . . 6
⊢ (𝜑 → (card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍)) |
| 134 | | finnum 9967 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
| 135 | 119, 134 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card) |
| 136 | | finnum 9967 |
. . . . . . . 8
⊢ (𝑍 ∈ Fin → 𝑍 ∈ dom
card) |
| 137 | 105, 136 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ dom card) |
| 138 | | carden2 10006 |
. . . . . . 7
⊢ (((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card ∧ 𝑍 ∈ dom card) → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
| 139 | 135, 137,
138 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((card‘(◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
| 140 | 133, 139 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
| 141 | | dfpss2 4068 |
. . . . . . . 8
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 ∧ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
| 142 | 141 | baib 535 |
. . . . . . 7
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
| 143 | 118, 142 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)) |
| 144 | | php3 9228 |
. . . . . . . . 9
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍) |
| 145 | | sdomnen 9000 |
. . . . . . . . 9
⊢ ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
| 146 | 144, 145 | syl 17 |
. . . . . . . 8
⊢ ((𝑍 ∈ Fin ∧ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍) |
| 147 | 146 | ex 412 |
. . . . . . 7
⊢ (𝑍 ∈ Fin → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
| 148 | 105, 147 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
| 149 | 143, 148 | sylbird 260 |
. . . . 5
⊢ (𝜑 → (¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍 → ¬ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)) |
| 150 | 140, 149 | mt4d 117 |
. . . 4
⊢ (𝜑 → (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍) |
| 151 | 109, 150 | eleqtrrd 2838 |
. . 3
⊢ (𝜑 → (𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))})) |
| 152 | | fvex 6894 |
. . . 4
⊢ (𝐻‘(card‘𝑍)) ∈ V |
| 153 | 152 | eliniseg 6086 |
. . . 4
⊢ ((𝐻‘(card‘𝑍)) ∈ V → ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍)))) |
| 154 | 152, 153 | ax-mp 5 |
. . 3
⊢ ((𝐻‘(card‘𝑍)) ∈ (◡(𝑊‘𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
| 155 | 151, 154 | sylib 218 |
. 2
⊢ (𝜑 → (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
| 156 | 25 | simprd 495 |
. . . . 5
⊢ (𝜑 → ((𝑊‘𝑍) We 𝑍 ∧ ∀𝑏 ∈ 𝑍 [(◡(𝑊‘𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊‘𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) |
| 157 | 156 | simpld 494 |
. . . 4
⊢ (𝜑 → (𝑊‘𝑍) We 𝑍) |
| 158 | | weso 5650 |
. . . 4
⊢ ((𝑊‘𝑍) We 𝑍 → (𝑊‘𝑍) Or 𝑍) |
| 159 | 157, 158 | syl 17 |
. . 3
⊢ (𝜑 → (𝑊‘𝑍) Or 𝑍) |
| 160 | | sonr 5590 |
. . 3
⊢ (((𝑊‘𝑍) Or 𝑍 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
| 161 | 159, 109,
160 | syl2anc 584 |
. 2
⊢ (𝜑 → ¬ (𝐻‘(card‘𝑍))(𝑊‘𝑍)(𝐻‘(card‘𝑍))) |
| 162 | 155, 161 | pm2.65i 194 |
1
⊢ ¬
𝜑 |