MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwfseqlem4 Structured version   Visualization version   GIF version

Theorem pwfseqlem4 10731
Description: Lemma for pwfseq 10733. Derive a final contradiction from the function 𝐹 in pwfseqlem3 10729. Applying fpwwe2 10712 to it, we get a certain maximal well-ordered subset 𝑍, but the defining property (𝑍𝐹(𝑊𝑍)) ∈ 𝑍 contradicts our assumption on 𝐹, so we are reduced to the case of 𝑍 finite. This too is a contradiction, though, because 𝑍 and its preimage under (𝑊𝑍) are distinct sets of the same cardinality and in a subset relation, which is impossible for finite sets. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by Matthew House, 10-Sep-2025.)
Hypotheses
Ref Expression
pwfseqlem4.g (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
pwfseqlem4.x (𝜑𝑋𝐴)
pwfseqlem4.h (𝜑𝐻:ω–1-1-onto𝑋)
pwfseqlem4.ps (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
pwfseqlem4.k ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
pwfseqlem4.d 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
pwfseqlem4.f 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
pwfseqlem4.w 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))}
pwfseqlem4.z 𝑍 = dom 𝑊
Assertion
Ref Expression
pwfseqlem4 ¬ 𝜑
Distinct variable groups:   𝑛,𝑟,𝑤,𝑥,𝑧   𝐷,𝑛,𝑧   𝑎,𝑏,𝑠,𝑣,𝐹   𝑤,𝐺   𝑤,𝐾   𝑟,𝑎,𝑥,𝑧,𝐻,𝑏,𝑠,𝑣   𝑛,𝑎,𝜑,𝑏,𝑠,𝑣,𝑟,𝑥,𝑧   𝜓,𝑛,𝑧   𝐴,𝑎,𝑛,𝑟,𝑠,𝑥,𝑧   𝑊,𝑎,𝑏,𝑠,𝑣   𝑍,𝑎,𝑏,𝑠,𝑣
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑥,𝑤,𝑣,𝑠,𝑟,𝑎,𝑏)   𝐴(𝑤,𝑣,𝑏)   𝐷(𝑥,𝑤,𝑣,𝑠,𝑟,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑤,𝑛,𝑟)   𝐺(𝑥,𝑧,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝐻(𝑤,𝑛)   𝐾(𝑥,𝑧,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝑊(𝑥,𝑧,𝑤,𝑛,𝑟)   𝑋(𝑥,𝑧,𝑤,𝑣,𝑛,𝑠,𝑟,𝑎,𝑏)   𝑍(𝑥,𝑧,𝑤,𝑛,𝑟)

Proof of Theorem pwfseqlem4
StepHypRef Expression
1 eqid 2740 . . . . . . . . . . . . 13 𝑍 = 𝑍
2 eqid 2740 . . . . . . . . . . . . 13 (𝑊𝑍) = (𝑊𝑍)
31, 2pm3.2i 470 . . . . . . . . . . . 12 (𝑍 = 𝑍 ∧ (𝑊𝑍) = (𝑊𝑍))
4 pwfseqlem4.w . . . . . . . . . . . . 13 𝑊 = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑏𝑎 [(𝑠 “ {𝑏}) / 𝑣](𝑣𝐹(𝑠 ∩ (𝑣 × 𝑣))) = 𝑏))}
5 pwfseqlem4.g . . . . . . . . . . . . . . 15 (𝜑𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛))
6 omex 9712 . . . . . . . . . . . . . . . 16 ω ∈ V
7 ovex 7481 . . . . . . . . . . . . . . . 16 (𝐴m 𝑛) ∈ V
86, 7iunex 8009 . . . . . . . . . . . . . . 15 𝑛 ∈ ω (𝐴m 𝑛) ∈ V
9 f1dmex 7997 . . . . . . . . . . . . . . 15 ((𝐺:𝒫 𝐴1-1 𝑛 ∈ ω (𝐴m 𝑛) ∧ 𝑛 ∈ ω (𝐴m 𝑛) ∈ V) → 𝒫 𝐴 ∈ V)
105, 8, 9sylancl 585 . . . . . . . . . . . . . 14 (𝜑 → 𝒫 𝐴 ∈ V)
11 pwexb 7801 . . . . . . . . . . . . . 14 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
1210, 11sylibr 234 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ V)
13 pwfseqlem4.x . . . . . . . . . . . . . 14 (𝜑𝑋𝐴)
14 pwfseqlem4.h . . . . . . . . . . . . . 14 (𝜑𝐻:ω–1-1-onto𝑋)
15 pwfseqlem4.ps . . . . . . . . . . . . . 14 (𝜓 ↔ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥))
16 pwfseqlem4.k . . . . . . . . . . . . . 14 ((𝜑𝜓) → 𝐾: 𝑛 ∈ ω (𝑥m 𝑛)–1-1𝑥)
17 pwfseqlem4.d . . . . . . . . . . . . . 14 𝐷 = (𝐺‘{𝑤𝑥 ∣ ((𝐾𝑤) ∈ ran 𝐺 ∧ ¬ 𝑤 ∈ (𝐺‘(𝐾𝑤)))})
18 pwfseqlem4.f . . . . . . . . . . . . . 14 𝐹 = (𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
195, 13, 14, 15, 16, 17, 18pwfseqlem4a 10730 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (𝑎𝐹𝑠) ∈ 𝐴)
20 pwfseqlem4.z . . . . . . . . . . . . 13 𝑍 = dom 𝑊
214, 12, 19, 20fpwwe2 10712 . . . . . . . . . . . 12 (𝜑 → ((𝑍𝑊(𝑊𝑍) ∧ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍) ↔ (𝑍 = 𝑍 ∧ (𝑊𝑍) = (𝑊𝑍))))
223, 21mpbiri 258 . . . . . . . . . . 11 (𝜑 → (𝑍𝑊(𝑊𝑍) ∧ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍))
2322simpld 494 . . . . . . . . . 10 (𝜑𝑍𝑊(𝑊𝑍))
244, 12fpwwe2lem2 10701 . . . . . . . . . 10 (𝜑 → (𝑍𝑊(𝑊𝑍) ↔ ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))))
2523, 24mpbid 232 . . . . . . . . 9 (𝜑 → ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)))
26 id 22 . . . . . . . . . . 11 ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
27263expa 1118 . . . . . . . . . 10 (((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ (𝑊𝑍) We 𝑍) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
2827adantrr 716 . . . . . . . . 9 (((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)) ∧ ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏)) → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
2925, 28syl 17 . . . . . . . 8 (𝜑 → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍))
3022simprd 495 . . . . . . . 8 (𝜑 → (𝑍𝐹(𝑊𝑍)) ∈ 𝑍)
3125simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍)))
3231simpld 494 . . . . . . . . . 10 (𝜑𝑍𝐴)
3312, 32ssexd 5342 . . . . . . . . 9 (𝜑𝑍 ∈ V)
34 fvexd 6935 . . . . . . . . 9 (𝜑 → (𝑊𝑍) ∈ V)
35 simpl 482 . . . . . . . . . . . 12 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → 𝑎 = 𝑍)
3635sseq1d 4040 . . . . . . . . . . 11 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑎𝐴𝑍𝐴))
37 simpr 484 . . . . . . . . . . . 12 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → 𝑠 = (𝑊𝑍))
3835sqxpeqd 5732 . . . . . . . . . . . 12 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑎 × 𝑎) = (𝑍 × 𝑍))
3937, 38sseq12d 4042 . . . . . . . . . . 11 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑠 ⊆ (𝑎 × 𝑎) ↔ (𝑊𝑍) ⊆ (𝑍 × 𝑍)))
4037, 35weeq12d 5689 . . . . . . . . . . 11 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑠 We 𝑎 ↔ (𝑊𝑍) We 𝑍))
4136, 39, 403anbi123d 1436 . . . . . . . . . 10 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ↔ (𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍)))
42 oveq12 7457 . . . . . . . . . . . 12 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑎𝐹𝑠) = (𝑍𝐹(𝑊𝑍)))
4342, 35eleq12d 2838 . . . . . . . . . . 11 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → ((𝑎𝐹𝑠) ∈ 𝑎 ↔ (𝑍𝐹(𝑊𝑍)) ∈ 𝑍))
4435breq1d 5176 . . . . . . . . . . 11 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (𝑎 ≺ ω ↔ 𝑍 ≺ ω))
4543, 44imbi12d 344 . . . . . . . . . 10 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω) ↔ ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω)))
4641, 45imbi12d 344 . . . . . . . . 9 ((𝑎 = 𝑍𝑠 = (𝑊𝑍)) → (((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω)) ↔ ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍) → ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω))))
47 omelon 9715 . . . . . . . . . . . . . 14 ω ∈ On
48 onenon 10018 . . . . . . . . . . . . . 14 (ω ∈ On → ω ∈ dom card)
4947, 48ax-mp 5 . . . . . . . . . . . . 13 ω ∈ dom card
50 simpr3 1196 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑠 We 𝑎)
515019.8ad 2183 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ∃𝑠 𝑠 We 𝑎)
52 ween 10104 . . . . . . . . . . . . . 14 (𝑎 ∈ dom card ↔ ∃𝑠 𝑠 We 𝑎)
5351, 52sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → 𝑎 ∈ dom card)
54 domtri2 10058 . . . . . . . . . . . . 13 ((ω ∈ dom card ∧ 𝑎 ∈ dom card) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
5549, 53, 54sylancr 586 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 ↔ ¬ 𝑎 ≺ ω))
56 nfv 1913 . . . . . . . . . . . . . . . 16 𝑟(𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))
57 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑟𝑎
58 nfmpo2 7531 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
5918, 58nfcxfr 2906 . . . . . . . . . . . . . . . . . 18 𝑟𝐹
60 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑟𝑠
6157, 59, 60nfov 7478 . . . . . . . . . . . . . . . . 17 𝑟(𝑎𝐹𝑠)
6261nfel1 2925 . . . . . . . . . . . . . . . 16 𝑟(𝑎𝐹𝑠) ∈ (𝐴𝑎)
6356, 62nfim 1895 . . . . . . . . . . . . . . 15 𝑟((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
64 sseq1 4034 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑠 → (𝑟 ⊆ (𝑎 × 𝑎) ↔ 𝑠 ⊆ (𝑎 × 𝑎)))
65 weeq1 5687 . . . . . . . . . . . . . . . . . . 19 (𝑟 = 𝑠 → (𝑟 We 𝑎𝑠 We 𝑎))
6664, 653anbi23d 1439 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑠 → ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ↔ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)))
6766anbi1d 630 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → (((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎) ↔ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)))
6867anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) ↔ (𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎))))
69 oveq2 7456 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑠 → (𝑎𝐹𝑟) = (𝑎𝐹𝑠))
7069eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑠 → ((𝑎𝐹𝑟) ∈ (𝐴𝑎) ↔ (𝑎𝐹𝑠) ∈ (𝐴𝑎)))
7168, 70imbi12d 344 . . . . . . . . . . . . . . 15 (𝑟 = 𝑠 → (((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))))
72 nfv 1913 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))
73 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑥𝑎
74 nfmpo1 7530 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ V, 𝑟 ∈ V ↦ if(𝑥 ∈ Fin, (𝐻‘(card‘𝑥)), (𝐷 {𝑧 ∈ ω ∣ ¬ (𝐷𝑧) ∈ 𝑥})))
7518, 74nfcxfr 2906 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
76 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑥𝑟
7773, 75, 76nfov 7478 . . . . . . . . . . . . . . . . . 18 𝑥(𝑎𝐹𝑟)
7877nfel1 2925 . . . . . . . . . . . . . . . . 17 𝑥(𝑎𝐹𝑟) ∈ (𝐴𝑎)
7972, 78nfim 1895 . . . . . . . . . . . . . . . 16 𝑥((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
80 sseq1 4034 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑥𝐴𝑎𝐴))
81 xpeq12 5725 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 = 𝑎𝑥 = 𝑎) → (𝑥 × 𝑥) = (𝑎 × 𝑎))
8281anidms 566 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑎 → (𝑥 × 𝑥) = (𝑎 × 𝑎))
8382sseq2d 4041 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑟 ⊆ (𝑥 × 𝑥) ↔ 𝑟 ⊆ (𝑎 × 𝑎)))
84 weeq2 5688 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑎 → (𝑟 We 𝑥𝑟 We 𝑎))
8580, 83, 843anbi123d 1436 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ↔ (𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎)))
86 breq2 5170 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎 → (ω ≼ 𝑥 ↔ ω ≼ 𝑎))
8785, 86anbi12d 631 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥) ∧ 𝑟 We 𝑥) ∧ ω ≼ 𝑥) ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
8815, 87bitrid 283 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝜓 ↔ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)))
8988anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((𝜑𝜓) ↔ (𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎))))
90 oveq1 7455 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝑥𝐹𝑟) = (𝑎𝐹𝑟))
91 difeq2 4143 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → (𝐴𝑥) = (𝐴𝑎))
9290, 91eleq12d 2838 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → ((𝑥𝐹𝑟) ∈ (𝐴𝑥) ↔ (𝑎𝐹𝑟) ∈ (𝐴𝑎)))
9389, 92imbi12d 344 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥)) ↔ ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))))
945, 13, 14, 15, 16, 17, 18pwfseqlem3 10729 . . . . . . . . . . . . . . . 16 ((𝜑𝜓) → (𝑥𝐹𝑟) ∈ (𝐴𝑥))
9579, 93, 94chvarfv 2241 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑎𝐴𝑟 ⊆ (𝑎 × 𝑎) ∧ 𝑟 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑟) ∈ (𝐴𝑎))
9663, 71, 95chvarfv 2241 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → (𝑎𝐹𝑠) ∈ (𝐴𝑎))
9796eldifbd 3989 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) ∧ ω ≼ 𝑎)) → ¬ (𝑎𝐹𝑠) ∈ 𝑎)
9897expr 456 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (ω ≼ 𝑎 → ¬ (𝑎𝐹𝑠) ∈ 𝑎))
9955, 98sylbird 260 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → (¬ 𝑎 ≺ ω → ¬ (𝑎𝐹𝑠) ∈ 𝑎))
10099con4d 115 . . . . . . . . . 10 ((𝜑 ∧ (𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎)) → ((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω))
101100ex 412 . . . . . . . . 9 (𝜑 → ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎) ∧ 𝑠 We 𝑎) → ((𝑎𝐹𝑠) ∈ 𝑎𝑎 ≺ ω)))
10233, 34, 46, 101vtocl2d 3574 . . . . . . . 8 (𝜑 → ((𝑍𝐴 ∧ (𝑊𝑍) ⊆ (𝑍 × 𝑍) ∧ (𝑊𝑍) We 𝑍) → ((𝑍𝐹(𝑊𝑍)) ∈ 𝑍𝑍 ≺ ω)))
10329, 30, 102mp2d 49 . . . . . . 7 (𝜑𝑍 ≺ ω)
104 isfinite 9721 . . . . . . 7 (𝑍 ∈ Fin ↔ 𝑍 ≺ ω)
105103, 104sylibr 234 . . . . . 6 (𝜑𝑍 ∈ Fin)
106 fvex 6933 . . . . . 6 (𝑊𝑍) ∈ V
1075, 13, 14, 15, 16, 17, 18pwfseqlem2 10728 . . . . . 6 ((𝑍 ∈ Fin ∧ (𝑊𝑍) ∈ V) → (𝑍𝐹(𝑊𝑍)) = (𝐻‘(card‘𝑍)))
108105, 106, 107sylancl 585 . . . . 5 (𝜑 → (𝑍𝐹(𝑊𝑍)) = (𝐻‘(card‘𝑍)))
109108, 30eqeltrrd 2845 . . . 4 (𝜑 → (𝐻‘(card‘𝑍)) ∈ 𝑍)
1104, 12, 23fpwwe2lem3 10702 . . . . . . . . . 10 ((𝜑 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍)))
111109, 110mpdan 686 . . . . . . . . 9 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘𝑍)))
112 cnvimass 6111 . . . . . . . . . . . 12 ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ dom (𝑊𝑍)
11331simprd 495 . . . . . . . . . . . . . 14 (𝜑 → (𝑊𝑍) ⊆ (𝑍 × 𝑍))
114 dmss 5927 . . . . . . . . . . . . . 14 ((𝑊𝑍) ⊆ (𝑍 × 𝑍) → dom (𝑊𝑍) ⊆ dom (𝑍 × 𝑍))
115113, 114syl 17 . . . . . . . . . . . . 13 (𝜑 → dom (𝑊𝑍) ⊆ dom (𝑍 × 𝑍))
116 dmxpss 6202 . . . . . . . . . . . . 13 dom (𝑍 × 𝑍) ⊆ 𝑍
117115, 116sstrdi 4021 . . . . . . . . . . . 12 (𝜑 → dom (𝑊𝑍) ⊆ 𝑍)
118112, 117sstrid 4020 . . . . . . . . . . 11 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍)
119105, 118ssfid 9329 . . . . . . . . . 10 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin)
120106inex1 5335 . . . . . . . . . 10 ((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V
1215, 13, 14, 15, 16, 17, 18pwfseqlem2 10728 . . . . . . . . . 10 ((((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin ∧ ((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ∈ V) → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
122119, 120, 121sylancl 585 . . . . . . . . 9 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})𝐹((𝑊𝑍) ∩ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) × ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
123111, 122eqtr3d 2782 . . . . . . . 8 (𝜑 → (𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
124 f1of1 6861 . . . . . . . . . 10 (𝐻:ω–1-1-onto𝑋𝐻:ω–1-1𝑋)
12514, 124syl 17 . . . . . . . . 9 (𝜑𝐻:ω–1-1𝑋)
126 ficardom 10030 . . . . . . . . . 10 (𝑍 ∈ Fin → (card‘𝑍) ∈ ω)
127105, 126syl 17 . . . . . . . . 9 (𝜑 → (card‘𝑍) ∈ ω)
128 ficardom 10030 . . . . . . . . . 10 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)
129119, 128syl 17 . . . . . . . . 9 (𝜑 → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)
130 f1fveq 7299 . . . . . . . . 9 ((𝐻:ω–1-1𝑋 ∧ ((card‘𝑍) ∈ ω ∧ (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) ∈ ω)) → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
131125, 127, 129, 130syl12anc 836 . . . . . . . 8 (𝜑 → ((𝐻‘(card‘𝑍)) = (𝐻‘(card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))) ↔ (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))))
132123, 131mpbid 232 . . . . . . 7 (𝜑 → (card‘𝑍) = (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})))
133132eqcomd 2746 . . . . . 6 (𝜑 → (card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍))
134 finnum 10017 . . . . . . . 8 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ Fin → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card)
135119, 134syl 17 . . . . . . 7 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card)
136 finnum 10017 . . . . . . . 8 (𝑍 ∈ Fin → 𝑍 ∈ dom card)
137105, 136syl 17 . . . . . . 7 (𝜑𝑍 ∈ dom card)
138 carden2 10056 . . . . . . 7 ((((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ∈ dom card ∧ 𝑍 ∈ dom card) → ((card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
139135, 137, 138syl2anc 583 . . . . . 6 (𝜑 → ((card‘((𝑊𝑍) “ {(𝐻‘(card‘𝑍))})) = (card‘𝑍) ↔ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
140133, 139mpbid 232 . . . . 5 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
141 dfpss2 4111 . . . . . . . 8 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 ∧ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
142141baib 535 . . . . . . 7 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊆ 𝑍 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
143118, 142syl 17 . . . . . 6 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 ↔ ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍))
144 php3 9275 . . . . . . . . 9 ((𝑍 ∈ Fin ∧ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍)
145 sdomnen 9041 . . . . . . . . 9 (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≺ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
146144, 145syl 17 . . . . . . . 8 ((𝑍 ∈ Fin ∧ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍) → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍)
147146ex 412 . . . . . . 7 (𝑍 ∈ Fin → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
148105, 147syl 17 . . . . . 6 (𝜑 → (((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ⊊ 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
149143, 148sylbird 260 . . . . 5 (𝜑 → (¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍 → ¬ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ≈ 𝑍))
150140, 149mt4d 117 . . . 4 (𝜑 → ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) = 𝑍)
151109, 150eleqtrrd 2847 . . 3 (𝜑 → (𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}))
152 fvex 6933 . . . 4 (𝐻‘(card‘𝑍)) ∈ V
153152eliniseg 6124 . . . 4 ((𝐻‘(card‘𝑍)) ∈ V → ((𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍))))
154152, 153ax-mp 5 . . 3 ((𝐻‘(card‘𝑍)) ∈ ((𝑊𝑍) “ {(𝐻‘(card‘𝑍))}) ↔ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
155151, 154sylib 218 . 2 (𝜑 → (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
15625simprd 495 . . . . 5 (𝜑 → ((𝑊𝑍) We 𝑍 ∧ ∀𝑏𝑍 [((𝑊𝑍) “ {𝑏}) / 𝑣](𝑣𝐹((𝑊𝑍) ∩ (𝑣 × 𝑣))) = 𝑏))
157156simpld 494 . . . 4 (𝜑 → (𝑊𝑍) We 𝑍)
158 weso 5691 . . . 4 ((𝑊𝑍) We 𝑍 → (𝑊𝑍) Or 𝑍)
159157, 158syl 17 . . 3 (𝜑 → (𝑊𝑍) Or 𝑍)
160 sonr 5632 . . 3 (((𝑊𝑍) Or 𝑍 ∧ (𝐻‘(card‘𝑍)) ∈ 𝑍) → ¬ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
161159, 109, 160syl2anc 583 . 2 (𝜑 → ¬ (𝐻‘(card‘𝑍))(𝑊𝑍)(𝐻‘(card‘𝑍)))
162155, 161pm2.65i 194 1 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  [wsbc 3804  cdif 3973  cin 3975  wss 3976  wpss 3977  ifcif 4548  𝒫 cpw 4622  {csn 4648   cuni 4931   cint 4970   ciun 5015   class class class wbr 5166  {copab 5228   Or wor 5606   We wwe 5651   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Oncon0 6395  1-1wf1 6570  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cmpo 7450  ωcom 7903  m cmap 8884  cen 9000  cdom 9001  csdm 9002  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-card 10008
This theorem is referenced by:  pwfseqlem5  10732
  Copyright terms: Public domain W3C validator