MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   GIF version

Theorem itg2gt0 25661
Description: If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1 (𝜑𝐴 ∈ dom vol)
itg2gt0.2 (𝜑 → 0 < (vol‘𝐴))
itg2gt0.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0.4 (𝜑𝐹 ∈ MblFn)
itg2gt0.5 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
Assertion
Ref Expression
itg2gt0 (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2 (𝜑 → 0 < (vol‘𝐴))
2 itg2gt0.1 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
3 iccssxr 13391 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
4 volf 25430 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
54ffvelcdmi 7055 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
63, 5sselid 3944 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
72, 6syl 17 . . . . . 6 (𝜑 → (vol‘𝐴) ∈ ℝ*)
87adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ∈ ℝ*)
9 itg2gt0.4 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
109elexd 3471 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
11 cnvexg 7900 . . . . . . . . . . . . . . 15 (𝐹 ∈ V → 𝐹 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
13 imaexg 7889 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1514adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1615fmpttd 7087 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V)
1716ffnd 6689 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
18 fniunfv 7221 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
1917, 18syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
20 itg2gt0.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶(0[,)+∞))
21 rge0ssre 13417 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
22 fss 6704 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
24 mbfima 25531 . . . . . . . . . . . . . . 15 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
259, 23, 24syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2726fmpttd 7087 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol)
2827ffvelcdmda 7056 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
2928ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
30 iunmbl 25454 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3129, 30syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3219, 31eqeltrrd 2829 . . . . . . . 8 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol)
33 mblss 25432 . . . . . . . 8 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
3432, 33syl 17 . . . . . . 7 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
35 ovolcl 25379 . . . . . . 7 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3634, 35syl 17 . . . . . 6 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3736adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
38 0xr 11221 . . . . . 6 0 ∈ ℝ*
3938a1i 11 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → 0 ∈ ℝ*)
40 mblvol 25431 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
412, 40syl 17 . . . . . . 7 (𝜑 → (vol‘𝐴) = (vol*‘𝐴))
42 mblss 25432 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
432, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4443sselda 3946 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4520ffvelcdmda 7056 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
46 elrege0 13415 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4745, 46sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4847simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4944, 48syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
50 itg2gt0.5 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
51 nnrecl 12440 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5249, 50, 51syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5320ffnd 6689 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
55 elpreima 7030 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5744adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5857biantrurd 532 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
59 nnrecre 12228 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
6059adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6160rexrd 11224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
6261adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
63 elioopnf 13404 . . . . . . . . . . . . . . . 16 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6556, 58, 643bitr2d 307 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
66 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
67 imaexg 7889 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6812, 67syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6968adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
70 oveq2 7395 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
7170oveq1d 7402 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞))
7271imaeq2d 6031 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
73 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))
7472, 73fvmptg 6966 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7566, 69, 74syl2anr 597 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7675eleq2d 2814 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))))
7749adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
7877biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
7965, 76, 783bitr4rd 312 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8079rexbidva 3155 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8152, 80mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))
8281ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
83 eluni2 4875 . . . . . . . . . . 11 (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧)
84 eleq2 2817 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥𝑧𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8584rexrn 7059 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8617, 85syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8783, 86bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8882, 87sylibrd 259 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
8988ssrdv 3952 . . . . . . . 8 (𝜑𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
90 ovolss 25386 . . . . . . . 8 ((𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9189, 34, 90syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9241, 91eqbrtrd 5129 . . . . . 6 (𝜑 → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9392adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
94 mblvol 25431 . . . . . . . . 9 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9532, 94syl 17 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
96 peano2nn 12198 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
98 nnrecre 12228 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (1 / (𝑘 + 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
10099rexrd 11224 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ*)
101 nnre 12193 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103102lep1d 12114 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1))
104 nngt0 12217 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 0 < 𝑘)
105104adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
10697nnred 12201 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
10797nngt0d 12235 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 + 1))
108 lerec 12066 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
109102, 105, 106, 107, 108syl22anc 838 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
110103, 109mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
111 iooss1 13341 . . . . . . . . . . . . 13 (((1 / (𝑘 + 1)) ∈ ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
112100, 110, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
113 imass2 6073 . . . . . . . . . . . 12 (((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
114112, 113syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
11566, 68, 74syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
116 imaexg 7889 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
11712, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
118 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
119118oveq1d 7402 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞))
120119imaeq2d 6031 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
121120, 73fvmptg 6966 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ ∧ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
12296, 117, 121syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
123114, 115, 1223sstr4d 4002 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
124123ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
125 volsup 25457 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12627, 124, 125syl2anc 584 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12795, 126eqtr3d 2766 . . . . . . 7 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
128127adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12968adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
13066, 129, 74syl2anr 597 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
131130fveq2d 6862 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
13238a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈ ℝ*)
133 nnrecgt0 12229 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 0 < (1 / 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → 0 < (1 / 𝑘))
135 0re 11176 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ
136 ltle 11262 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
137135, 60, 136sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
138134, 137mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
139 elxrge0 13418 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 𝑘) ∈ (0[,]+∞) ↔ ((1 / 𝑘) ∈ ℝ* ∧ 0 ≤ (1 / 𝑘)))
14061, 138, 139sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,]+∞))
141 0e0iccpnf 13420 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0[,]+∞)
142 ifcl 4534 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 𝑘) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
143140, 141, 142sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
144143adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
145144fmpttd 7087 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
146145adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
147 itg2cl 25633 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
149 icossicc 13397 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ (0[,]+∞)
150 fss 6704 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
15120, 149, 150sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℝ⟶(0[,]+∞))
152 itg2cl 25633 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∫2𝐹) ∈ ℝ*)
154153adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2𝐹) ∈ ℝ*)
155 0nrp 12988 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
156 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
157115, 28eqeltrrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
158157adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
160156, 135eqeltrrdi 2837 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)
16160, 134elrpd 12992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
162161adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ ℝ+)
163162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ ℝ+)
164 itg2const2 25642 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 / 𝑘) ∈ ℝ+) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
165159, 163, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
166160, 165mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ)
167 elrege0 13415 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ (0[,)+∞) ↔ ((1 / 𝑘) ∈ ℝ ∧ 0 ≤ (1 / 𝑘)))
16860, 138, 167sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,)+∞))
169168adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ (0[,)+∞))
170169adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞))
171 itg2const 25641 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 / 𝑘) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
172159, 166, 170, 171syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
173156, 172eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
174 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
175166, 174elrpd 12992 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ+)
176163, 175rpmulcld 13011 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈ ℝ+)
177173, 176eqeltrd 2828 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈ ℝ+)
178177ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈ ℝ+))
179155, 178mtoi 199 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
180 itg2ge0 25636 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
181146, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
182 xrleloe 13104 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
18338, 148, 182sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
184181, 183mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
185184ord 864 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
186179, 185mt3d 148 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
187151adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞))
18860adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ)
18953adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
190189, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
191190biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞)))
192191simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ)
19348adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
194192, 193syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ℝ)
19561adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ*)
196191simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))
197 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥)) → (1 / 𝑘) < (𝐹𝑥))
19863, 197biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹𝑥)))
199195, 196, 198sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹𝑥))
200188, 194, 199ltled 11322 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹𝑥))
20147simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
202201adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
203192, 202syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
204 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 𝑘) = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
205 breq1 5110 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
206204, 205ifboth 4528 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑘) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
207200, 203, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
208207adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
209 iffalse 4497 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
210209adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
211202adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
212210, 211eqbrtrd 5129 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
213208, 212pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
214213ralrimiva 3125 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
215214adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
216 reex 11159 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
217216a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ∈ V)
218 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 𝑘) ∈ V
219 c0ex 11168 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ V
220218, 219ifex 4539 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V)
222 fvexd 6873 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
223 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))
22420feqmptd 6929 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
225217, 221, 222, 223, 224ofrfval2 7674 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
226225biimpar 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
227215, 226syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
228 itg2le 25640 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
229146, 187, 227, 228syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
230132, 148, 154, 186, 229xrltletrd 13121 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2𝐹))
231230expr 456 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 < (∫2𝐹)))
232231con3d 152 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
2334ffvelcdmi 7055 . . . . . . . . . . . . . . . . 17 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ (0[,]+∞))
2343, 233sselid 3944 . . . . . . . . . . . . . . . 16 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
235157, 234syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
236 xrlenlt 11239 . . . . . . . . . . . . . . 15 (((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
237235, 38, 236sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
238232, 237sylibrd 259 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0))
239238imp 406 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ 0 < (∫2𝐹)) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
240239an32s 652 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
241131, 240eqbrtrd 5129 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
242241ralrimiva 3125 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
243 ffn 6688 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
244 fveq2 6858 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
245244breq1d 5117 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
246245ralrn 7060 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
24716, 243, 2463syl 18 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
248247adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
249242, 248mpbird 257 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)
250 ffn 6688 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
2514, 250ax-mp 5 . . . . . . . . 9 vol Fn dom vol
25227frnd 6696 . . . . . . . . . 10 (𝜑 → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
253252adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
254 breq1 5110 . . . . . . . . . 10 (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0))
255254ralima 7211 . . . . . . . . 9 ((vol Fn dom vol ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
256251, 253, 255sylancr 587 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
257249, 256mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
258 imassrn 6042 . . . . . . . . 9 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran vol
259 frn 6695 . . . . . . . . . . 11 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
2604, 259ax-mp 5 . . . . . . . . . 10 ran vol ⊆ (0[,]+∞)
261260, 3sstri 3956 . . . . . . . . 9 ran vol ⊆ ℝ*
262258, 261sstri 3956 . . . . . . . 8 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
263 supxrleub 13286 . . . . . . . 8 (((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0))
264262, 38, 263mp2an 692 . . . . . . 7 (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
265257, 264sylibr 234 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0)
266128, 265eqbrtrd 5129 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0)
2678, 37, 39, 93, 266xrletrd 13122 . . . 4 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ 0)
268267ex 412 . . 3 (𝜑 → (¬ 0 < (∫2𝐹) → (vol‘𝐴) ≤ 0))
269 xrlenlt 11239 . . . 4 (((vol‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
2707, 38, 269sylancl 586 . . 3 (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
271268, 270sylibd 239 . 2 (𝜑 → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘𝐴)))
2721, 271mt4d 117 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  ifcif 4488   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  r cofr 7652  supcsup 9391  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209   / cdiv 11835  cn 12186  +crp 12951  (,)cioo 13306  [,)cico 13308  [,]cicc 13309  vol*covol 25363  volcvol 25364  MblFncmbf 25515  2citg2 25517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-rest 17385  df-topgen 17406  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-bases 22833  df-cmp 23274  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-0p 25571
This theorem is referenced by:  itggt0  25745
  Copyright terms: Public domain W3C validator