MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   GIF version

Theorem itg2gt0 24925
Description: If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1 (𝜑𝐴 ∈ dom vol)
itg2gt0.2 (𝜑 → 0 < (vol‘𝐴))
itg2gt0.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0.4 (𝜑𝐹 ∈ MblFn)
itg2gt0.5 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
Assertion
Ref Expression
itg2gt0 (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2 (𝜑 → 0 < (vol‘𝐴))
2 itg2gt0.1 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
3 iccssxr 13162 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
4 volf 24693 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
54ffvelrni 6960 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
63, 5sselid 3919 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
72, 6syl 17 . . . . . 6 (𝜑 → (vol‘𝐴) ∈ ℝ*)
87adantr 481 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ∈ ℝ*)
9 itg2gt0.4 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
109elexd 3452 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
11 cnvexg 7771 . . . . . . . . . . . . . . 15 (𝐹 ∈ V → 𝐹 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
13 imaexg 7762 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1514adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1615fmpttd 6989 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V)
1716ffnd 6601 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
18 fniunfv 7120 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
1917, 18syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
20 itg2gt0.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶(0[,)+∞))
21 rge0ssre 13188 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
22 fss 6617 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
24 mbfima 24794 . . . . . . . . . . . . . . 15 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
259, 23, 24syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2625adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2726fmpttd 6989 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol)
2827ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
2928ralrimiva 3103 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
30 iunmbl 24717 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3129, 30syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3219, 31eqeltrrd 2840 . . . . . . . 8 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol)
33 mblss 24695 . . . . . . . 8 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
3432, 33syl 17 . . . . . . 7 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
35 ovolcl 24642 . . . . . . 7 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3634, 35syl 17 . . . . . 6 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3736adantr 481 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
38 0xr 11022 . . . . . 6 0 ∈ ℝ*
3938a1i 11 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → 0 ∈ ℝ*)
40 mblvol 24694 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
412, 40syl 17 . . . . . . 7 (𝜑 → (vol‘𝐴) = (vol*‘𝐴))
42 mblss 24695 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
432, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4443sselda 3921 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4520ffvelrnda 6961 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
46 elrege0 13186 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4745, 46sylib 217 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4847simpld 495 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4944, 48syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
50 itg2gt0.5 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
51 nnrecl 12231 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5249, 50, 51syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5320ffnd 6601 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
5453ad2antrr 723 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
55 elpreima 6935 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5744adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5857biantrurd 533 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
59 nnrecre 12015 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
6059adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6160rexrd 11025 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
6261adantlr 712 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
63 elioopnf 13175 . . . . . . . . . . . . . . . 16 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6556, 58, 643bitr2d 307 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
66 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
67 imaexg 7762 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6812, 67syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6968adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
70 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
7170oveq1d 7290 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞))
7271imaeq2d 5969 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
73 eqid 2738 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))
7472, 73fvmptg 6873 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7566, 69, 74syl2anr 597 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7675eleq2d 2824 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))))
7749adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
7877biantrurd 533 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
7965, 76, 783bitr4rd 312 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8079rexbidva 3225 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8152, 80mpbid 231 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))
8281ex 413 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
83 eluni2 4843 . . . . . . . . . . 11 (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧)
84 eleq2 2827 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥𝑧𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8584rexrn 6963 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8617, 85syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8783, 86bitrid 282 . . . . . . . . . 10 (𝜑 → (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8882, 87sylibrd 258 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
8988ssrdv 3927 . . . . . . . 8 (𝜑𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
90 ovolss 24649 . . . . . . . 8 ((𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9189, 34, 90syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9241, 91eqbrtrd 5096 . . . . . 6 (𝜑 → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9392adantr 481 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
94 mblvol 24694 . . . . . . . . 9 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9532, 94syl 17 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
96 peano2nn 11985 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9796adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
98 nnrecre 12015 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (1 / (𝑘 + 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
10099rexrd 11025 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ*)
101 nnre 11980 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
102101adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103102lep1d 11906 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1))
104 nngt0 12004 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 0 < 𝑘)
105104adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
10697nnred 11988 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
10797nngt0d 12022 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 + 1))
108 lerec 11858 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
109102, 105, 106, 107, 108syl22anc 836 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
110103, 109mpbid 231 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
111 iooss1 13114 . . . . . . . . . . . . 13 (((1 / (𝑘 + 1)) ∈ ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
112100, 110, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
113 imass2 6010 . . . . . . . . . . . 12 (((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
114112, 113syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
11566, 68, 74syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
116 imaexg 7762 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
11712, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
118 oveq2 7283 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
119118oveq1d 7290 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞))
120119imaeq2d 5969 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
121120, 73fvmptg 6873 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ ∧ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
12296, 117, 121syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
123114, 115, 1223sstr4d 3968 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
124123ralrimiva 3103 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
125 volsup 24720 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12627, 124, 125syl2anc 584 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12795, 126eqtr3d 2780 . . . . . . 7 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
128127adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12968adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
13066, 129, 74syl2anr 597 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
131130fveq2d 6778 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
13238a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈ ℝ*)
133 nnrecgt0 12016 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 0 < (1 / 𝑘))
134133adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → 0 < (1 / 𝑘))
135 0re 10977 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ
136 ltle 11063 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
137135, 60, 136sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
138134, 137mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
139 elxrge0 13189 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 𝑘) ∈ (0[,]+∞) ↔ ((1 / 𝑘) ∈ ℝ* ∧ 0 ≤ (1 / 𝑘)))
14061, 138, 139sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,]+∞))
141 0e0iccpnf 13191 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0[,]+∞)
142 ifcl 4504 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 𝑘) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
143140, 141, 142sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
144143adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
145144fmpttd 6989 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
146145adantrr 714 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
147 itg2cl 24897 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
149 icossicc 13168 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ (0[,]+∞)
150 fss 6617 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
15120, 149, 150sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℝ⟶(0[,]+∞))
152 itg2cl 24897 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∫2𝐹) ∈ ℝ*)
154153adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2𝐹) ∈ ℝ*)
155 0nrp 12765 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
156 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
157115, 28eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
158157adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
159158adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
160156, 135eqeltrrdi 2848 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)
16160, 134elrpd 12769 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
162161adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ ℝ+)
163162adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ ℝ+)
164 itg2const2 24906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 / 𝑘) ∈ ℝ+) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
165159, 163, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
166160, 165mpbird 256 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ)
167 elrege0 13186 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ (0[,)+∞) ↔ ((1 / 𝑘) ∈ ℝ ∧ 0 ≤ (1 / 𝑘)))
16860, 138, 167sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,)+∞))
169168adantrr 714 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ (0[,)+∞))
170169adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞))
171 itg2const 24905 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 / 𝑘) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
172159, 166, 170, 171syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
173156, 172eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
174 simplrr 775 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
175166, 174elrpd 12769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ+)
176163, 175rpmulcld 12788 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈ ℝ+)
177173, 176eqeltrd 2839 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈ ℝ+)
178177ex 413 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈ ℝ+))
179155, 178mtoi 198 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
180 itg2ge0 24900 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
181146, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
182 xrleloe 12878 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
18338, 148, 182sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
184181, 183mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
185184ord 861 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
186179, 185mt3d 148 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
187151adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞))
18860adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ)
18953adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
190189, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
191190biimpa 477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞)))
192191simpld 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ)
19348adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
194192, 193syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ℝ)
19561adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ*)
196191simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))
197 simpr 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥)) → (1 / 𝑘) < (𝐹𝑥))
19863, 197syl6bi 252 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹𝑥)))
199195, 196, 198sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹𝑥))
200188, 194, 199ltled 11123 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹𝑥))
20147simprd 496 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
202201adantlr 712 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
203192, 202syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
204 breq1 5077 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 𝑘) = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
205 breq1 5077 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
206204, 205ifboth 4498 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑘) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
207200, 203, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
208207adantlr 712 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
209 iffalse 4468 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
210209adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
211202adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
212210, 211eqbrtrd 5096 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
213208, 212pm2.61dan 810 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
214213ralrimiva 3103 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
215214adantrr 714 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
216 reex 10962 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
217216a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ∈ V)
218 ovex 7308 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 𝑘) ∈ V
219 c0ex 10969 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ V
220218, 219ifex 4509 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V)
222 fvexd 6789 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
223 eqidd 2739 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))
22420feqmptd 6837 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
225217, 221, 222, 223, 224ofrfval2 7554 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
226225biimpar 478 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
227215, 226syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
228 itg2le 24904 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
229146, 187, 227, 228syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
230132, 148, 154, 186, 229xrltletrd 12895 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2𝐹))
231230expr 457 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 < (∫2𝐹)))
232231con3d 152 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
2334ffvelrni 6960 . . . . . . . . . . . . . . . . 17 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ (0[,]+∞))
2343, 233sselid 3919 . . . . . . . . . . . . . . . 16 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
235157, 234syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
236 xrlenlt 11040 . . . . . . . . . . . . . . 15 (((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
237235, 38, 236sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
238232, 237sylibrd 258 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0))
239238imp 407 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ 0 < (∫2𝐹)) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
240239an32s 649 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
241131, 240eqbrtrd 5096 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
242241ralrimiva 3103 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
243 ffn 6600 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
244 fveq2 6774 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
245244breq1d 5084 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
246245ralrn 6964 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
24716, 243, 2463syl 18 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
248247adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
249242, 248mpbird 256 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)
250 ffn 6600 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
2514, 250ax-mp 5 . . . . . . . . 9 vol Fn dom vol
25227frnd 6608 . . . . . . . . . 10 (𝜑 → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
253252adantr 481 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
254 breq1 5077 . . . . . . . . . 10 (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0))
255254ralima 7114 . . . . . . . . 9 ((vol Fn dom vol ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
256251, 253, 255sylancr 587 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
257249, 256mpbird 256 . . . . . . 7 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
258 imassrn 5980 . . . . . . . . 9 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran vol
259 frn 6607 . . . . . . . . . . 11 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
2604, 259ax-mp 5 . . . . . . . . . 10 ran vol ⊆ (0[,]+∞)
261260, 3sstri 3930 . . . . . . . . 9 ran vol ⊆ ℝ*
262258, 261sstri 3930 . . . . . . . 8 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
263 supxrleub 13060 . . . . . . . 8 (((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0))
264262, 38, 263mp2an 689 . . . . . . 7 (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
265257, 264sylibr 233 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0)
266128, 265eqbrtrd 5096 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0)
2678, 37, 39, 93, 266xrletrd 12896 . . . 4 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ 0)
268267ex 413 . . 3 (𝜑 → (¬ 0 < (∫2𝐹) → (vol‘𝐴) ≤ 0))
269 xrlenlt 11040 . . . 4 (((vol‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
2707, 38, 269sylancl 586 . . 3 (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
271268, 270sylibd 238 . 2 (𝜑 → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘𝐴)))
2721, 271mt4d 117 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  wss 3887  ifcif 4459   cuni 4839   ciun 4924   class class class wbr 5074  cmpt 5157  ccnv 5588  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  r cofr 7532  supcsup 9199  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  +∞cpnf 11006  *cxr 11008   < clt 11009  cle 11010   / cdiv 11632  cn 11973  +crp 12730  (,)cioo 13079  [,)cico 13081  [,]cicc 13082  vol*covol 24626  volcvol 24627  MblFncmbf 24778  2citg2 24780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-rest 17133  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-bases 22096  df-cmp 22538  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-0p 24834
This theorem is referenced by:  itggt0  25008
  Copyright terms: Public domain W3C validator