MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   GIF version

Theorem itg2gt0 25668
Description: If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1 (𝜑𝐴 ∈ dom vol)
itg2gt0.2 (𝜑 → 0 < (vol‘𝐴))
itg2gt0.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0.4 (𝜑𝐹 ∈ MblFn)
itg2gt0.5 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
Assertion
Ref Expression
itg2gt0 (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2 (𝜑 → 0 < (vol‘𝐴))
2 itg2gt0.1 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
3 iccssxr 13398 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
4 volf 25437 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
54ffvelcdmi 7058 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
63, 5sselid 3947 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
72, 6syl 17 . . . . . 6 (𝜑 → (vol‘𝐴) ∈ ℝ*)
87adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ∈ ℝ*)
9 itg2gt0.4 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
109elexd 3474 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
11 cnvexg 7903 . . . . . . . . . . . . . . 15 (𝐹 ∈ V → 𝐹 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
13 imaexg 7892 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1514adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1615fmpttd 7090 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V)
1716ffnd 6692 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
18 fniunfv 7224 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
1917, 18syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
20 itg2gt0.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶(0[,)+∞))
21 rge0ssre 13424 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
22 fss 6707 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
24 mbfima 25538 . . . . . . . . . . . . . . 15 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
259, 23, 24syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2726fmpttd 7090 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol)
2827ffvelcdmda 7059 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
2928ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
30 iunmbl 25461 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3129, 30syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3219, 31eqeltrrd 2830 . . . . . . . 8 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol)
33 mblss 25439 . . . . . . . 8 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
3432, 33syl 17 . . . . . . 7 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
35 ovolcl 25386 . . . . . . 7 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3634, 35syl 17 . . . . . 6 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3736adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
38 0xr 11228 . . . . . 6 0 ∈ ℝ*
3938a1i 11 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → 0 ∈ ℝ*)
40 mblvol 25438 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
412, 40syl 17 . . . . . . 7 (𝜑 → (vol‘𝐴) = (vol*‘𝐴))
42 mblss 25439 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
432, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4443sselda 3949 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4520ffvelcdmda 7059 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
46 elrege0 13422 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4745, 46sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4847simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4944, 48syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
50 itg2gt0.5 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
51 nnrecl 12447 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5249, 50, 51syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5320ffnd 6692 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
55 elpreima 7033 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5744adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5857biantrurd 532 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
59 nnrecre 12235 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
6059adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6160rexrd 11231 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
6261adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
63 elioopnf 13411 . . . . . . . . . . . . . . . 16 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6556, 58, 643bitr2d 307 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
66 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
67 imaexg 7892 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6812, 67syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6968adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
70 oveq2 7398 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
7170oveq1d 7405 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞))
7271imaeq2d 6034 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
73 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))
7472, 73fvmptg 6969 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7566, 69, 74syl2anr 597 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7675eleq2d 2815 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))))
7749adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
7877biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
7965, 76, 783bitr4rd 312 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8079rexbidva 3156 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8152, 80mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))
8281ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
83 eluni2 4878 . . . . . . . . . . 11 (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧)
84 eleq2 2818 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥𝑧𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8584rexrn 7062 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8617, 85syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8783, 86bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8882, 87sylibrd 259 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
8988ssrdv 3955 . . . . . . . 8 (𝜑𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
90 ovolss 25393 . . . . . . . 8 ((𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9189, 34, 90syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9241, 91eqbrtrd 5132 . . . . . 6 (𝜑 → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9392adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
94 mblvol 25438 . . . . . . . . 9 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9532, 94syl 17 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
96 peano2nn 12205 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
98 nnrecre 12235 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (1 / (𝑘 + 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
10099rexrd 11231 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ*)
101 nnre 12200 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103102lep1d 12121 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1))
104 nngt0 12224 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 0 < 𝑘)
105104adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
10697nnred 12208 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
10797nngt0d 12242 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 + 1))
108 lerec 12073 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
109102, 105, 106, 107, 108syl22anc 838 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
110103, 109mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
111 iooss1 13348 . . . . . . . . . . . . 13 (((1 / (𝑘 + 1)) ∈ ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
112100, 110, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
113 imass2 6076 . . . . . . . . . . . 12 (((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
114112, 113syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
11566, 68, 74syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
116 imaexg 7892 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
11712, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
118 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
119118oveq1d 7405 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞))
120119imaeq2d 6034 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
121120, 73fvmptg 6969 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ ∧ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
12296, 117, 121syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
123114, 115, 1223sstr4d 4005 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
124123ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
125 volsup 25464 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12627, 124, 125syl2anc 584 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12795, 126eqtr3d 2767 . . . . . . 7 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
128127adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12968adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
13066, 129, 74syl2anr 597 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
131130fveq2d 6865 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
13238a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈ ℝ*)
133 nnrecgt0 12236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 0 < (1 / 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → 0 < (1 / 𝑘))
135 0re 11183 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ
136 ltle 11269 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
137135, 60, 136sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
138134, 137mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
139 elxrge0 13425 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 𝑘) ∈ (0[,]+∞) ↔ ((1 / 𝑘) ∈ ℝ* ∧ 0 ≤ (1 / 𝑘)))
14061, 138, 139sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,]+∞))
141 0e0iccpnf 13427 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0[,]+∞)
142 ifcl 4537 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 𝑘) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
143140, 141, 142sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
144143adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
145144fmpttd 7090 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
146145adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
147 itg2cl 25640 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
149 icossicc 13404 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ (0[,]+∞)
150 fss 6707 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
15120, 149, 150sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℝ⟶(0[,]+∞))
152 itg2cl 25640 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∫2𝐹) ∈ ℝ*)
154153adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2𝐹) ∈ ℝ*)
155 0nrp 12995 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
156 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
157115, 28eqeltrrd 2830 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
158157adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
160156, 135eqeltrrdi 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)
16160, 134elrpd 12999 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
162161adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ ℝ+)
163162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ ℝ+)
164 itg2const2 25649 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 / 𝑘) ∈ ℝ+) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
165159, 163, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
166160, 165mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ)
167 elrege0 13422 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ (0[,)+∞) ↔ ((1 / 𝑘) ∈ ℝ ∧ 0 ≤ (1 / 𝑘)))
16860, 138, 167sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,)+∞))
169168adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ (0[,)+∞))
170169adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞))
171 itg2const 25648 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 / 𝑘) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
172159, 166, 170, 171syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
173156, 172eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
174 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
175166, 174elrpd 12999 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ+)
176163, 175rpmulcld 13018 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈ ℝ+)
177173, 176eqeltrd 2829 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈ ℝ+)
178177ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈ ℝ+))
179155, 178mtoi 199 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
180 itg2ge0 25643 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
181146, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
182 xrleloe 13111 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
18338, 148, 182sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
184181, 183mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
185184ord 864 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
186179, 185mt3d 148 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
187151adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞))
18860adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ)
18953adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
190189, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
191190biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞)))
192191simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ)
19348adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
194192, 193syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ℝ)
19561adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ*)
196191simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))
197 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥)) → (1 / 𝑘) < (𝐹𝑥))
19863, 197biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹𝑥)))
199195, 196, 198sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹𝑥))
200188, 194, 199ltled 11329 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹𝑥))
20147simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
202201adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
203192, 202syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
204 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 𝑘) = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
205 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
206204, 205ifboth 4531 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑘) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
207200, 203, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
208207adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
209 iffalse 4500 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
210209adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
211202adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
212210, 211eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
213208, 212pm2.61dan 812 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
214213ralrimiva 3126 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
215214adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
216 reex 11166 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
217216a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ∈ V)
218 ovex 7423 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 𝑘) ∈ V
219 c0ex 11175 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ V
220218, 219ifex 4542 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V)
222 fvexd 6876 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
223 eqidd 2731 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))
22420feqmptd 6932 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
225217, 221, 222, 223, 224ofrfval2 7677 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
226225biimpar 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
227215, 226syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
228 itg2le 25647 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
229146, 187, 227, 228syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
230132, 148, 154, 186, 229xrltletrd 13128 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2𝐹))
231230expr 456 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 < (∫2𝐹)))
232231con3d 152 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
2334ffvelcdmi 7058 . . . . . . . . . . . . . . . . 17 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ (0[,]+∞))
2343, 233sselid 3947 . . . . . . . . . . . . . . . 16 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
235157, 234syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
236 xrlenlt 11246 . . . . . . . . . . . . . . 15 (((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
237235, 38, 236sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
238232, 237sylibrd 259 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0))
239238imp 406 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ 0 < (∫2𝐹)) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
240239an32s 652 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
241131, 240eqbrtrd 5132 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
242241ralrimiva 3126 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
243 ffn 6691 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
244 fveq2 6861 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
245244breq1d 5120 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
246245ralrn 7063 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
24716, 243, 2463syl 18 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
248247adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
249242, 248mpbird 257 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)
250 ffn 6691 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
2514, 250ax-mp 5 . . . . . . . . 9 vol Fn dom vol
25227frnd 6699 . . . . . . . . . 10 (𝜑 → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
253252adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
254 breq1 5113 . . . . . . . . . 10 (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0))
255254ralima 7214 . . . . . . . . 9 ((vol Fn dom vol ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
256251, 253, 255sylancr 587 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
257249, 256mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
258 imassrn 6045 . . . . . . . . 9 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran vol
259 frn 6698 . . . . . . . . . . 11 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
2604, 259ax-mp 5 . . . . . . . . . 10 ran vol ⊆ (0[,]+∞)
261260, 3sstri 3959 . . . . . . . . 9 ran vol ⊆ ℝ*
262258, 261sstri 3959 . . . . . . . 8 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
263 supxrleub 13293 . . . . . . . 8 (((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0))
264262, 38, 263mp2an 692 . . . . . . 7 (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
265257, 264sylibr 234 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0)
266128, 265eqbrtrd 5132 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0)
2678, 37, 39, 93, 266xrletrd 13129 . . . 4 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ 0)
268267ex 412 . . 3 (𝜑 → (¬ 0 < (∫2𝐹) → (vol‘𝐴) ≤ 0))
269 xrlenlt 11246 . . . 4 (((vol‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
2707, 38, 269sylancl 586 . . 3 (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
271268, 270sylibd 239 . 2 (𝜑 → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘𝐴)))
2721, 271mt4d 117 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  wss 3917  ifcif 4491   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  r cofr 7655  supcsup 9398  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216   / cdiv 11842  cn 12193  +crp 12958  (,)cioo 13313  [,)cico 13315  [,]cicc 13316  vol*covol 25370  volcvol 25371  MblFncmbf 25522  2citg2 25524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-0p 25578
This theorem is referenced by:  itggt0  25752
  Copyright terms: Public domain W3C validator