Step | Hyp | Ref
| Expression |
1 | | itg2gt0.2 |
. 2
⊢ (𝜑 → 0 < (vol‘𝐴)) |
2 | | itg2gt0.1 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ dom vol) |
3 | | iccssxr 13091 |
. . . . . . . 8
⊢
(0[,]+∞) ⊆ ℝ* |
4 | | volf 24598 |
. . . . . . . . 9
⊢ vol:dom
vol⟶(0[,]+∞) |
5 | 4 | ffvelrni 6942 |
. . . . . . . 8
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
(0[,]+∞)) |
6 | 3, 5 | sselid 3915 |
. . . . . . 7
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) ∈
ℝ*) |
7 | 2, 6 | syl 17 |
. . . . . 6
⊢ (𝜑 → (vol‘𝐴) ∈
ℝ*) |
8 | 7 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol‘𝐴) ∈
ℝ*) |
9 | | itg2gt0.4 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹 ∈ MblFn) |
10 | 9 | elexd 3442 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹 ∈ V) |
11 | | cnvexg 7745 |
. . . . . . . . . . . . . . 15
⊢ (𝐹 ∈ V → ◡𝐹 ∈ V) |
12 | 10, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ◡𝐹 ∈ V) |
13 | | imaexg 7736 |
. . . . . . . . . . . . . 14
⊢ (◡𝐹 ∈ V → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V) |
14 | 12, 13 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V) |
15 | 14 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V) |
16 | 15 | fmpttd 6971 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V) |
17 | 16 | ffnd 6585 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ) |
18 | | fniunfv 7102 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → ∪ 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) |
20 | | itg2gt0.3 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
21 | | rge0ssre 13117 |
. . . . . . . . . . . . . . . 16
⊢
(0[,)+∞) ⊆ ℝ |
22 | | fss 6601 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) |
23 | 20, 21, 22 | sylancl 585 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
24 | | mbfima 24699 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) →
(◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom
vol) |
25 | 9, 23, 24 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom
vol) |
26 | 25 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom
vol) |
27 | 26 | fmpttd 6971 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom
vol) |
28 | 27 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol) |
29 | 28 | ralrimiva 3107 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol) |
30 | | iunmbl 24622 |
. . . . . . . . . 10
⊢
(∀𝑘 ∈
ℕ ((𝑛 ∈ ℕ
↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → ∪ 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol) |
31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol) |
32 | 19, 31 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom
vol) |
33 | | mblss 24600 |
. . . . . . . 8
⊢ (∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆
ℝ) |
34 | 32, 33 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆
ℝ) |
35 | | ovolcl 24547 |
. . . . . . 7
⊢ (∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ →
(vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈
ℝ*) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (𝜑 → (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈
ℝ*) |
37 | 36 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈
ℝ*) |
38 | | 0xr 10953 |
. . . . . 6
⊢ 0 ∈
ℝ* |
39 | 38 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → 0 ∈
ℝ*) |
40 | | mblvol 24599 |
. . . . . . . 8
⊢ (𝐴 ∈ dom vol →
(vol‘𝐴) =
(vol*‘𝐴)) |
41 | 2, 40 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (vol‘𝐴) = (vol*‘𝐴)) |
42 | | mblss 24600 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ dom vol → 𝐴 ⊆
ℝ) |
43 | 2, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
44 | 43 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ) |
45 | 20 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ (0[,)+∞)) |
46 | | elrege0 13115 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
47 | 45, 46 | sylib 217 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) |
48 | 47 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
49 | 44, 48 | syldan 590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
50 | | itg2gt0.5 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 < (𝐹‘𝑥)) |
51 | | nnrecl 12161 |
. . . . . . . . . . . . 13
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ 0 < (𝐹‘𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹‘𝑥)) |
52 | 49, 50, 51 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹‘𝑥)) |
53 | 20 | ffnd 6585 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹 Fn ℝ) |
54 | 53 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ) |
55 | | elpreima 6917 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 Fn ℝ → (𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞)))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞)))) |
57 | 44 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ) |
58 | 57 | biantrurd 532 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞)))) |
59 | | nnrecre 11945 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
60 | 59 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ) |
61 | 60 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ*) |
62 | 61 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ*) |
63 | | elioopnf 13104 |
. . . . . . . . . . . . . . . 16
⊢ ((1 /
𝑘) ∈
ℝ* → ((𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹‘𝑥)))) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹‘𝑥)))) |
65 | 56, 58, 64 | 3bitr2d 306 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹‘𝑥)))) |
66 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ) |
67 | | imaexg 7736 |
. . . . . . . . . . . . . . . . . 18
⊢ (◡𝐹 ∈ V → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) |
68 | 12, 67 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) |
69 | 68 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) |
70 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘)) |
71 | 70 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞)) |
72 | 71 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑘 → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) = (◡𝐹 “ ((1 / 𝑘)(,)+∞))) |
73 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) |
74 | 72, 73 | fvmptg 6855 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ ∧ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (◡𝐹 “ ((1 / 𝑘)(,)+∞))) |
75 | 66, 69, 74 | syl2anr 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (◡𝐹 “ ((1 / 𝑘)(,)+∞))) |
76 | 75 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)))) |
77 | 49 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑥) ∈ ℝ) |
78 | 77 | biantrurd 532 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹‘𝑥) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹‘𝑥)))) |
79 | 65, 76, 78 | 3bitr4rd 311 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹‘𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
80 | 79 | rexbidva 3224 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹‘𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
81 | 52, 80 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) |
82 | 81 | ex 412 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
83 | | eluni2 4840 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥 ∈ 𝑧) |
84 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
85 | 84 | rexrn 6945 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ →
(∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥 ∈ 𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
86 | 17, 85 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥 ∈ 𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
87 | 83, 86 | syl5bb 282 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ ∪ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
88 | 82, 87 | sylibrd 258 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
89 | 88 | ssrdv 3923 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ⊆ ∪ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))) |
90 | | ovolss 24554 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) →
(vol*‘𝐴) ≤
(vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
91 | 89, 34, 90 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (vol*‘𝐴) ≤ (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
92 | 41, 91 | eqbrtrd 5092 |
. . . . . 6
⊢ (𝜑 → (vol‘𝐴) ≤ (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
93 | 92 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol‘𝐴) ≤ (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
94 | | mblvol 24599 |
. . . . . . . . 9
⊢ (∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol →
(vol‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
95 | 32, 94 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (vol‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))) |
96 | | peano2nn 11915 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → (𝑘 + 1) ∈
ℕ) |
97 | 96 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ) |
98 | | nnrecre 11945 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 + 1) ∈ ℕ → (1 /
(𝑘 + 1)) ∈
ℝ) |
99 | 97, 98 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈
ℝ) |
100 | 99 | rexrd 10956 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈
ℝ*) |
101 | | nnre 11910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
102 | 101 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ) |
103 | 102 | lep1d 11836 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1)) |
104 | | nngt0 11934 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
105 | 104 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < 𝑘) |
106 | 97 | nnred 11918 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ) |
107 | 97 | nngt0d 11952 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < (𝑘 + 1)) |
108 | | lerec 11788 |
. . . . . . . . . . . . . . 15
⊢ (((𝑘 ∈ ℝ ∧ 0 <
𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0
< (𝑘 + 1))) →
(𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘))) |
109 | 102, 105,
106, 107, 108 | syl22anc 835 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘))) |
110 | 103, 109 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) |
111 | | iooss1 13043 |
. . . . . . . . . . . . 13
⊢ (((1 /
(𝑘 + 1)) ∈
ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 +
1))(,)+∞)) |
112 | 100, 110,
111 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 /
(𝑘 +
1))(,)+∞)) |
113 | | imass2 5999 |
. . . . . . . . . . . 12
⊢ (((1 /
𝑘)(,)+∞) ⊆ ((1
/ (𝑘 + 1))(,)+∞)
→ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞))) |
114 | 112, 113 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞))) |
115 | 66, 68, 74 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (◡𝐹 “ ((1 / 𝑘)(,)+∞))) |
116 | | imaexg 7736 |
. . . . . . . . . . . . 13
⊢ (◡𝐹 ∈ V → (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈
V) |
117 | 12, 116 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈
V) |
118 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1))) |
119 | 118 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞)) |
120 | 119 | imaeq2d 5958 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑘 + 1) → (◡𝐹 “ ((1 / 𝑛)(,)+∞)) = (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞))) |
121 | 120, 73 | fvmptg 6855 |
. . . . . . . . . . . 12
⊢ (((𝑘 + 1) ∈ ℕ ∧
(◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞))) |
122 | 96, 117, 121 | syl2anr 596 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (◡𝐹 “ ((1 / (𝑘 + 1))(,)+∞))) |
123 | 114, 115,
122 | 3sstr4d 3964 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) |
124 | 123 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) |
125 | | volsup 24625 |
. . . . . . . . 9
⊢ (((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧
∀𝑘 ∈ ℕ
((𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, <
)) |
126 | 27, 124, 125 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (vol‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, <
)) |
127 | 95, 126 | eqtr3d 2780 |
. . . . . . 7
⊢ (𝜑 → (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, <
)) |
128 | 127 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, <
)) |
129 | 68 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) |
130 | 66, 129, 74 | syl2anr 596 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (◡𝐹 “ ((1 / 𝑘)(,)+∞))) |
131 | 130 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞)))) |
132 | 38 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈
ℝ*) |
133 | | nnrecgt0 11946 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑘 ∈ ℕ → 0 < (1
/ 𝑘)) |
134 | 133 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 < (1 / 𝑘)) |
135 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 0 ∈
ℝ |
136 | | ltle 10994 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((0
∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘))) |
137 | 135, 60, 136 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘))) |
138 | 134, 137 | mpd 15 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘)) |
139 | | elxrge0 13118 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 /
𝑘) ∈ (0[,]+∞)
↔ ((1 / 𝑘) ∈
ℝ* ∧ 0 ≤ (1 / 𝑘))) |
140 | 61, 138, 139 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
(0[,]+∞)) |
141 | | 0e0iccpnf 13120 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 ∈
(0[,]+∞) |
142 | | ifcl 4501 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((1 /
𝑘) ∈ (0[,]+∞)
∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞)) |
143 | 140, 141,
142 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞)) |
144 | 143 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞)) |
145 | 144 | fmpttd 6971 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘),
0)):ℝ⟶(0[,]+∞)) |
146 | 145 | adantrr 713 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘),
0)):ℝ⟶(0[,]+∞)) |
147 | | itg2cl 24802 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈
ℝ*) |
148 | 146, 147 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈
ℝ*) |
149 | | icossicc 13097 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
150 | | fss 6601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞)) |
151 | 20, 149, 150 | sylancl 585 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹:ℝ⟶(0[,]+∞)) |
152 | | itg2cl 24802 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹:ℝ⟶(0[,]+∞)
→ (∫2‘𝐹) ∈
ℝ*) |
153 | 151, 152 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(∫2‘𝐹)
∈ ℝ*) |
154 | 153 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) →
(∫2‘𝐹)
∈ ℝ*) |
155 | | 0nrp 12694 |
. . . . . . . . . . . . . . . . . . 19
⊢ ¬ 0
∈ ℝ+ |
156 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) |
157 | 115, 28 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom
vol) |
158 | 157 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom
vol) |
159 | 158 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom
vol) |
160 | 156, 135 | eqeltrrdi 2848 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ) |
161 | 60, 134 | elrpd 12698 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ+) |
162 | 161 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈
ℝ+) |
163 | 162 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈
ℝ+) |
164 | | itg2const2 24811 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 /
𝑘) ∈
ℝ+) → ((vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)) |
165 | 159, 163,
164 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)) |
166 | 160, 165 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈
ℝ) |
167 | | elrege0 13115 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((1 /
𝑘) ∈ (0[,)+∞)
↔ ((1 / 𝑘) ∈
ℝ ∧ 0 ≤ (1 / 𝑘))) |
168 | 60, 138, 167 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
(0[,)+∞)) |
169 | 168 | adantrr 713 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈
(0[,)+∞)) |
170 | 169 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞)) |
171 | | itg2const 24810 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 /
𝑘) ∈ (0[,)+∞))
→ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
172 | 159, 166,
170, 171 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
173 | 156, 172 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
174 | | simplrr 774 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞)))) |
175 | 166, 174 | elrpd 12698 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈
ℝ+) |
176 | 163, 175 | rpmulcld 12717 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈
ℝ+) |
177 | 173, 176 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈
ℝ+) |
178 | 177 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈
ℝ+)) |
179 | 155, 178 | mtoi 198 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) |
180 | | itg2ge0 24805 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0
≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) |
181 | 146, 180 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) |
182 | | xrleloe 12807 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0
∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0
≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 <
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))) |
183 | 38, 148, 182 | sylancr 586 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 <
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))) |
184 | 181, 183 | mpbid 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 <
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))) |
185 | 184 | ord 860 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 <
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 =
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))) |
186 | 179, 185 | mt3d 148 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 <
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) |
187 | 151 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞)) |
188 | 60 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈
ℝ) |
189 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ) |
190 | 189, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞)))) |
191 | 190 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞))) |
192 | 191 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ) |
193 | 48 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
194 | 192, 193 | syldan 590 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹‘𝑥) ∈ ℝ) |
195 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈
ℝ*) |
196 | 191 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞)) |
197 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹‘𝑥)) → (1 / 𝑘) < (𝐹‘𝑥)) |
198 | 63, 197 | syl6bi 252 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((1 /
𝑘) ∈
ℝ* → ((𝐹‘𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹‘𝑥))) |
199 | 195, 196,
198 | sylc 65 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹‘𝑥)) |
200 | 188, 194,
199 | ltled 11053 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹‘𝑥)) |
201 | 47 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
202 | 201 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹‘𝑥)) |
203 | 192, 202 | syldan 590 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹‘𝑥)) |
204 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((1 /
𝑘) = if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥))) |
205 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (0 =
if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹‘𝑥) ↔ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥))) |
206 | 204, 205 | ifboth 4495 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((1 /
𝑘) ≤ (𝐹‘𝑥) ∧ 0 ≤ (𝐹‘𝑥)) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
207 | 200, 203,
206 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
208 | 207 | adantlr 711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
209 | | iffalse 4465 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0) |
210 | 209 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0) |
211 | 202 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹‘𝑥)) |
212 | 210, 211 | eqbrtrd 5092 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
213 | 208, 212 | pm2.61dan 809 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
214 | 213 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
215 | 214 | adantrr 713 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) |
216 | | reex 10893 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℝ
∈ V |
217 | 216 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ℝ ∈
V) |
218 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (1 /
𝑘) ∈
V |
219 | | c0ex 10900 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 0 ∈
V |
220 | 218, 219 | ifex 4506 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V |
221 | 220 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V) |
222 | | fvexd 6771 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ V) |
223 | | eqidd 2739 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) |
224 | 20 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
225 | 217, 221,
222, 223, 224 | ofrfval2 7532 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥))) |
226 | 225 | biimpar 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹‘𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r ≤ 𝐹) |
227 | 215, 226 | syldan 590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r ≤ 𝐹) |
228 | | itg2le 24809 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧
𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r ≤ 𝐹) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2‘𝐹)) |
229 | 146, 187,
227, 228 | syl3anc 1369 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) →
(∫2‘(𝑥
∈ ℝ ↦ if(𝑥
∈ (◡𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2‘𝐹)) |
230 | 132, 148,
154, 186, 229 | xrltletrd 12824 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 <
(∫2‘𝐹)) |
231 | 230 | expr 456 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 <
(∫2‘𝐹))) |
232 | 231 | con3d 152 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (¬ 0 <
(∫2‘𝐹)
→ ¬ 0 < (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
233 | 4 | ffvelrni 6942 |
. . . . . . . . . . . . . . . . 17
⊢ ((◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol →
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈
(0[,]+∞)) |
234 | 3, 233 | sselid 3915 |
. . . . . . . . . . . . . . . 16
⊢ ((◡𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol →
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈
ℝ*) |
235 | 157, 234 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈
ℝ*) |
236 | | xrlenlt 10971 |
. . . . . . . . . . . . . . 15
⊢
(((vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*
∧ 0 ∈ ℝ*) → ((vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
237 | 235, 38, 236 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 <
(vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))))) |
238 | 232, 237 | sylibrd 258 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (¬ 0 <
(∫2‘𝐹)
→ (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)) |
239 | 238 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ ¬ 0 <
(∫2‘𝐹)) → (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0) |
240 | 239 | an32s 648 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(◡𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0) |
241 | 131, 240 | eqbrtrd 5092 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0) |
242 | 241 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0) |
243 | | ffn 6584 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V →
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ) |
244 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))) |
245 | 244 | breq1d 5080 |
. . . . . . . . . . . 12
⊢ (𝑧 = ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)) |
246 | 245 | ralrn 6946 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ →
(∀𝑧 ∈ ran
(𝑛 ∈ ℕ ↦
(◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)) |
247 | 16, 243, 246 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)) |
248 | 247 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)) |
249 | 242, 248 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0) |
250 | | ffn 6584 |
. . . . . . . . . 10
⊢ (vol:dom
vol⟶(0[,]+∞) → vol Fn dom vol) |
251 | 4, 250 | ax-mp 5 |
. . . . . . . . 9
⊢ vol Fn
dom vol |
252 | 27 | frnd 6592 |
. . . . . . . . . 10
⊢ (𝜑 → ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom
vol) |
253 | 252 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom
vol) |
254 | | breq1 5073 |
. . . . . . . . . 10
⊢ (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0)) |
255 | 254 | ralima 7096 |
. . . . . . . . 9
⊢ ((vol Fn
dom vol ∧ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) →
(∀𝑥 ∈ (vol
“ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)) |
256 | 251, 253,
255 | sylancr 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)) |
257 | 249, 256 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0) |
258 | | imassrn 5969 |
. . . . . . . . 9
⊢ (vol
“ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran
vol |
259 | | frn 6591 |
. . . . . . . . . . 11
⊢ (vol:dom
vol⟶(0[,]+∞) → ran vol ⊆
(0[,]+∞)) |
260 | 4, 259 | ax-mp 5 |
. . . . . . . . . 10
⊢ ran vol
⊆ (0[,]+∞) |
261 | 260, 3 | sstri 3926 |
. . . . . . . . 9
⊢ ran vol
⊆ ℝ* |
262 | 258, 261 | sstri 3926 |
. . . . . . . 8
⊢ (vol
“ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆
ℝ* |
263 | | supxrleub 12989 |
. . . . . . . 8
⊢ (((vol
“ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < )
≤ 0 ↔ ∀𝑥
∈ (vol “ ran (𝑛
∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)) |
264 | 262, 38, 263 | mp2an 688 |
. . . . . . 7
⊢ (sup((vol
“ ran (𝑛 ∈
ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < )
≤ 0 ↔ ∀𝑥
∈ (vol “ ran (𝑛
∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0) |
265 | 257, 264 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < )
≤ 0) |
266 | 128, 265 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol*‘∪ ran (𝑛 ∈ ℕ ↦ (◡𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0) |
267 | 8, 37, 39, 93, 266 | xrletrd 12825 |
. . . 4
⊢ ((𝜑 ∧ ¬ 0 <
(∫2‘𝐹)) → (vol‘𝐴) ≤ 0) |
268 | 267 | ex 412 |
. . 3
⊢ (𝜑 → (¬ 0 <
(∫2‘𝐹)
→ (vol‘𝐴) ≤
0)) |
269 | | xrlenlt 10971 |
. . . 4
⊢
(((vol‘𝐴)
∈ ℝ* ∧ 0 ∈ ℝ*) →
((vol‘𝐴) ≤ 0
↔ ¬ 0 < (vol‘𝐴))) |
270 | 7, 38, 269 | sylancl 585 |
. . 3
⊢ (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 <
(vol‘𝐴))) |
271 | 268, 270 | sylibd 238 |
. 2
⊢ (𝜑 → (¬ 0 <
(∫2‘𝐹)
→ ¬ 0 < (vol‘𝐴))) |
272 | 1, 271 | mt4d 117 |
1
⊢ (𝜑 → 0 <
(∫2‘𝐹)) |