MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2gt0 Structured version   Visualization version   GIF version

Theorem itg2gt0 25795
Description: If the function 𝐹 is strictly positive on a set of positive measure, then the integral of the function is positive. (Contributed by Mario Carneiro, 30-Aug-2014.)
Hypotheses
Ref Expression
itg2gt0.1 (𝜑𝐴 ∈ dom vol)
itg2gt0.2 (𝜑 → 0 < (vol‘𝐴))
itg2gt0.3 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2gt0.4 (𝜑𝐹 ∈ MblFn)
itg2gt0.5 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
Assertion
Ref Expression
itg2gt0 (𝜑 → 0 < (∫2𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg2gt0
Dummy variables 𝑘 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2gt0.2 . 2 (𝜑 → 0 < (vol‘𝐴))
2 itg2gt0.1 . . . . . . 7 (𝜑𝐴 ∈ dom vol)
3 iccssxr 13470 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
4 volf 25564 . . . . . . . . 9 vol:dom vol⟶(0[,]+∞)
54ffvelcdmi 7103 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ (0[,]+∞))
63, 5sselid 3981 . . . . . . 7 (𝐴 ∈ dom vol → (vol‘𝐴) ∈ ℝ*)
72, 6syl 17 . . . . . 6 (𝜑 → (vol‘𝐴) ∈ ℝ*)
87adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ∈ ℝ*)
9 itg2gt0.4 . . . . . . . . . . . . . . . 16 (𝜑𝐹 ∈ MblFn)
109elexd 3504 . . . . . . . . . . . . . . 15 (𝜑𝐹 ∈ V)
11 cnvexg 7946 . . . . . . . . . . . . . . 15 (𝐹 ∈ V → 𝐹 ∈ V)
1210, 11syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ V)
13 imaexg 7935 . . . . . . . . . . . . . 14 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1412, 13syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1514adantr 480 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ V)
1615fmpttd 7135 . . . . . . . . . . 11 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V)
1716ffnd 6737 . . . . . . . . . 10 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
18 fniunfv 7267 . . . . . . . . . 10 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
1917, 18syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
20 itg2gt0.3 . . . . . . . . . . . . . . . 16 (𝜑𝐹:ℝ⟶(0[,)+∞))
21 rge0ssre 13496 . . . . . . . . . . . . . . . 16 (0[,)+∞) ⊆ ℝ
22 fss 6752 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ)
2320, 21, 22sylancl 586 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
24 mbfima 25665 . . . . . . . . . . . . . . 15 ((𝐹 ∈ MblFn ∧ 𝐹:ℝ⟶ℝ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
259, 23, 24syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ ℕ) → (𝐹 “ ((1 / 𝑛)(,)+∞)) ∈ dom vol)
2726fmpttd 7135 . . . . . . . . . . . 12 (𝜑 → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol)
2827ffvelcdmda 7104 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
2928ralrimiva 3146 . . . . . . . . . 10 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
30 iunmbl 25588 . . . . . . . . . 10 (∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol → 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3129, 30syl 17 . . . . . . . . 9 (𝜑 𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ∈ dom vol)
3219, 31eqeltrrd 2842 . . . . . . . 8 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol)
33 mblss 25566 . . . . . . . 8 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
3432, 33syl 17 . . . . . . 7 (𝜑 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ)
35 ovolcl 25513 . . . . . . 7 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3634, 35syl 17 . . . . . 6 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
3736adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ∈ ℝ*)
38 0xr 11308 . . . . . 6 0 ∈ ℝ*
3938a1i 11 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → 0 ∈ ℝ*)
40 mblvol 25565 . . . . . . . 8 (𝐴 ∈ dom vol → (vol‘𝐴) = (vol*‘𝐴))
412, 40syl 17 . . . . . . 7 (𝜑 → (vol‘𝐴) = (vol*‘𝐴))
42 mblss 25566 . . . . . . . . . . . . . . . 16 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
432, 42syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐴 ⊆ ℝ)
4443sselda 3983 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ)
4520ffvelcdmda 7104 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ (0[,)+∞))
46 elrege0 13494 . . . . . . . . . . . . . . . 16 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4745, 46sylib 218 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
4847simpld 494 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
4944, 48syldan 591 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
50 itg2gt0.5 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → 0 < (𝐹𝑥))
51 nnrecl 12524 . . . . . . . . . . . . 13 (((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5249, 50, 51syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥))
5320ffnd 6737 . . . . . . . . . . . . . . . . 17 (𝜑𝐹 Fn ℝ)
5453ad2antrr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
55 elpreima 7078 . . . . . . . . . . . . . . . 16 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5654, 55syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
5744adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5857biantrurd 532 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
59 nnrecre 12308 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
6059adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6160rexrd 11311 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
6261adantlr 715 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ*)
63 elioopnf 13483 . . . . . . . . . . . . . . . 16 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
6556, 58, 643bitr2d 307 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
66 id 22 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
67 imaexg 7935 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ V → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6812, 67syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
6968adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
70 oveq2 7439 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (1 / 𝑛) = (1 / 𝑘))
7170oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((1 / 𝑛)(,)+∞) = ((1 / 𝑘)(,)+∞))
7271imaeq2d 6078 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
73 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) = (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))
7472, 73fvmptg 7014 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7566, 69, 74syl2anr 597 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
7675eleq2d 2827 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ↔ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))))
7749adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → (𝐹𝑥) ∈ ℝ)
7877biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ ((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥))))
7965, 76, 783bitr4rd 312 . . . . . . . . . . . . 13 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝐹𝑥) ↔ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8079rexbidva 3177 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → (∃𝑘 ∈ ℕ (1 / 𝑘) < (𝐹𝑥) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8152, 80mpbid 232 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘))
8281ex 412 . . . . . . . . . 10 (𝜑 → (𝑥𝐴 → ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
83 eluni2 4911 . . . . . . . . . . 11 (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧)
84 eleq2 2830 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (𝑥𝑧𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8584rexrn 7107 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8617, 85syl 17 . . . . . . . . . . 11 (𝜑 → (∃𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))𝑥𝑧 ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8783, 86bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ↔ ∃𝑘 ∈ ℕ 𝑥 ∈ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
8882, 87sylibrd 259 . . . . . . . . 9 (𝜑 → (𝑥𝐴𝑥 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
8988ssrdv 3989 . . . . . . . 8 (𝜑𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))
90 ovolss 25520 . . . . . . . 8 ((𝐴 ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ ℝ) → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9189, 34, 90syl2anc 584 . . . . . . 7 (𝜑 → (vol*‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9241, 91eqbrtrd 5165 . . . . . 6 (𝜑 → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9392adantr 480 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
94 mblvol 25565 . . . . . . . . 9 ( ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ∈ dom vol → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
9532, 94syl 17 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))))
96 peano2nn 12278 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
9796adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℕ)
98 nnrecre 12308 . . . . . . . . . . . . . . 15 ((𝑘 + 1) ∈ ℕ → (1 / (𝑘 + 1)) ∈ ℝ)
9997, 98syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ)
10099rexrd 11311 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ∈ ℝ*)
101 nnre 12273 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℝ)
103102lep1d 12199 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝑘 ≤ (𝑘 + 1))
104 nngt0 12297 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 0 < 𝑘)
105104adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < 𝑘)
10697nnred 12281 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝑘 + 1) ∈ ℝ)
10797nngt0d 12315 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → 0 < (𝑘 + 1))
108 lerec 12151 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℝ ∧ 0 < 𝑘) ∧ ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
109102, 105, 106, 107, 108syl22anc 839 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝑘 ≤ (𝑘 + 1) ↔ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)))
110103, 109mpbid 232 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (1 / (𝑘 + 1)) ≤ (1 / 𝑘))
111 iooss1 13422 . . . . . . . . . . . . 13 (((1 / (𝑘 + 1)) ∈ ℝ* ∧ (1 / (𝑘 + 1)) ≤ (1 / 𝑘)) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
112100, 110, 111syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞))
113 imass2 6120 . . . . . . . . . . . 12 (((1 / 𝑘)(,)+∞) ⊆ ((1 / (𝑘 + 1))(,)+∞) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
114112, 113syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ⊆ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
11566, 68, 74syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
116 imaexg 7935 . . . . . . . . . . . . 13 (𝐹 ∈ V → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
11712, 116syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V)
118 oveq2 7439 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
119118oveq1d 7446 . . . . . . . . . . . . . 14 (𝑛 = (𝑘 + 1) → ((1 / 𝑛)(,)+∞) = ((1 / (𝑘 + 1))(,)+∞))
120119imaeq2d 6078 . . . . . . . . . . . . 13 (𝑛 = (𝑘 + 1) → (𝐹 “ ((1 / 𝑛)(,)+∞)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
121120, 73fvmptg 7014 . . . . . . . . . . . 12 (((𝑘 + 1) ∈ ℕ ∧ (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)) ∈ V) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
12296, 117, 121syl2anr 597 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)) = (𝐹 “ ((1 / (𝑘 + 1))(,)+∞)))
123114, 115, 1223sstr4d 4039 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
124123ralrimiva 3146 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1)))
125 volsup 25591 . . . . . . . . 9 (((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶dom vol ∧ ∀𝑘 ∈ ℕ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) ⊆ ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘(𝑘 + 1))) → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12627, 124, 125syl2anc 584 . . . . . . . 8 (𝜑 → (vol‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12795, 126eqtr3d 2779 . . . . . . 7 (𝜑 → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
128127adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) = sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ))
12968adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ V)
13066, 129, 74syl2anr 597 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) = (𝐹 “ ((1 / 𝑘)(,)+∞)))
131130fveq2d 6910 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) = (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
13238a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ∈ ℝ*)
133 nnrecgt0 12309 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ ℕ → 0 < (1 / 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → 0 < (1 / 𝑘))
135 0re 11263 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 ∈ ℝ
136 ltle 11349 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((0 ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
137135, 60, 136sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ ℕ) → (0 < (1 / 𝑘) → 0 ≤ (1 / 𝑘)))
138134, 137mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / 𝑘))
139 elxrge0 13497 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 / 𝑘) ∈ (0[,]+∞) ↔ ((1 / 𝑘) ∈ ℝ* ∧ 0 ≤ (1 / 𝑘)))
14061, 138, 139sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,]+∞))
141 0e0iccpnf 13499 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ (0[,]+∞)
142 ifcl 4571 . . . . . . . . . . . . . . . . . . . . . 22 (((1 / 𝑘) ∈ (0[,]+∞) ∧ 0 ∈ (0[,]+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
143140, 141, 142sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ ℕ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
144143adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ (0[,]+∞))
145144fmpttd 7135 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
146145adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞))
147 itg2cl 25767 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*)
149 icossicc 13476 . . . . . . . . . . . . . . . . . . . 20 (0[,)+∞) ⊆ (0[,]+∞)
150 fss 6752 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → 𝐹:ℝ⟶(0[,]+∞))
15120, 149, 150sylancl 586 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:ℝ⟶(0[,]+∞))
152 itg2cl 25767 . . . . . . . . . . . . . . . . . . 19 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
153151, 152syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (∫2𝐹) ∈ ℝ*)
154153adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2𝐹) ∈ ℝ*)
155 0nrp 13070 . . . . . . . . . . . . . . . . . . 19 ¬ 0 ∈ ℝ+
156 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
157115, 28eqeltrrd 2842 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
158157adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
159158adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol)
160156, 135eqeltrrdi 2850 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ)
16160, 134elrpd 13074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ+)
162161adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ ℝ+)
163162adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ ℝ+)
164 itg2const2 25776 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (1 / 𝑘) ∈ ℝ+) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
165159, 163, 164syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ↔ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ))
166160, 165mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ)
167 elrege0 13494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ (0[,)+∞) ↔ ((1 / 𝑘) ∈ ℝ ∧ 0 ≤ (1 / 𝑘)))
16860, 138, 167sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ (0[,)+∞))
169168adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (1 / 𝑘) ∈ (0[,)+∞))
170169adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (1 / 𝑘) ∈ (0[,)+∞))
171 itg2const 25775 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol ∧ (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ ∧ (1 / 𝑘) ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
172159, 166, 170, 171syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
173156, 172eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 = ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
174 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))
175166, 174elrpd 13074 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ+)
176163, 175rpmulcld 13093 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → ((1 / 𝑘) · (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))) ∈ ℝ+)
177173, 176eqeltrd 2841 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) ∧ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))) → 0 ∈ ℝ+)
178177ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 ∈ ℝ+))
179155, 178mtoi 199 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ¬ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
180 itg2ge0 25770 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
181146, 180syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
182 xrleloe 13186 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ* ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∈ ℝ*) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
18338, 148, 182sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 ≤ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ↔ (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))))
184181, 183mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ∨ 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
185184ord 865 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (¬ 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) → 0 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))))
186179, 185mt3d 148 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))))
187151adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 𝐹:ℝ⟶(0[,]+∞))
18860adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ)
18953adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑘 ∈ ℕ) → 𝐹 Fn ℝ)
190189, 55syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑘 ∈ ℕ) → (𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))))
191190biimpa 476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝑥 ∈ ℝ ∧ (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞)))
192191simpld 494 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 𝑥 ∈ ℝ)
19348adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
194192, 193syldan 591 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ℝ)
19561adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ∈ ℝ*)
196191simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞))
197 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹𝑥) ∈ ℝ ∧ (1 / 𝑘) < (𝐹𝑥)) → (1 / 𝑘) < (𝐹𝑥))
19863, 197biimtrdi 253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 𝑘) ∈ ℝ* → ((𝐹𝑥) ∈ ((1 / 𝑘)(,)+∞) → (1 / 𝑘) < (𝐹𝑥)))
199195, 196, 198sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) < (𝐹𝑥))
200188, 194, 199ltled 11409 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → (1 / 𝑘) ≤ (𝐹𝑥))
20147simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
202201adantlr 715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → 0 ≤ (𝐹𝑥))
203192, 202syldan 591 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
204 breq1 5146 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1 / 𝑘) = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → ((1 / 𝑘) ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
205 breq1 5146 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 = if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) → (0 ≤ (𝐹𝑥) ↔ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
206204, 205ifboth 4565 . . . . . . . . . . . . . . . . . . . . . . . 24 (((1 / 𝑘) ≤ (𝐹𝑥) ∧ 0 ≤ (𝐹𝑥)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
207200, 203, 206syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
208207adantlr 715 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
209 iffalse 4534 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
210209adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) = 0)
211202adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 ≤ (𝐹𝑥))
212210, 211eqbrtrd 5165 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) ∧ ¬ 𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞))) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
213208, 212pm2.61dan 813 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ ℕ) ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
214213ralrimiva 3146 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ ℕ) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
215214adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥))
216 reex 11246 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
217216a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ℝ ∈ V)
218 ovex 7464 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 𝑘) ∈ V
219 c0ex 11255 . . . . . . . . . . . . . . . . . . . . . . 23 0 ∈ V
220218, 219ifex 4576 . . . . . . . . . . . . . . . . . . . . . 22 if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V
221220a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ∈ V)
222 fvexd 6921 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ V)
223 eqidd 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)))
22420feqmptd 6977 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
225217, 221, 222, 223, 224ofrfval2 7718 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹 ↔ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)))
226225biimpar 477 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ∀𝑥 ∈ ℝ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0) ≤ (𝐹𝑥)) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
227215, 226syldan 591 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹)
228 itg2le 25774 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)):ℝ⟶(0[,]+∞) ∧ 𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0)) ∘r𝐹) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
229146, 187, 227, 228syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ (𝐹 “ ((1 / 𝑘)(,)+∞)), (1 / 𝑘), 0))) ≤ (∫2𝐹))
230132, 148, 154, 186, 229xrltletrd 13203 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))))) → 0 < (∫2𝐹))
231230expr 456 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) → 0 < (∫2𝐹)))
232231con3d 152 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
2334ffvelcdmi 7103 . . . . . . . . . . . . . . . . 17 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ (0[,]+∞))
2343, 233sselid 3981 . . . . . . . . . . . . . . . 16 ((𝐹 “ ((1 / 𝑘)(,)+∞)) ∈ dom vol → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
235157, 234syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ*)
236 xrlenlt 11326 . . . . . . . . . . . . . . 15 (((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
237235, 38, 236sylancl 586 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ((vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0 ↔ ¬ 0 < (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞)))))
238232, 237sylibrd 259 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (¬ 0 < (∫2𝐹) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0))
239238imp 406 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ 0 < (∫2𝐹)) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
240239an32s 652 . . . . . . . . . . 11 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘(𝐹 “ ((1 / 𝑘)(,)+∞))) ≤ 0)
241131, 240eqbrtrd 5165 . . . . . . . . . 10 (((𝜑 ∧ ¬ 0 < (∫2𝐹)) ∧ 𝑘 ∈ ℕ) → (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
242241ralrimiva 3146 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0)
243 ffn 6736 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))):ℕ⟶V → (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ)
244 fveq2 6906 . . . . . . . . . . . . 13 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → (vol‘𝑧) = (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)))
245244breq1d 5153 . . . . . . . . . . . 12 (𝑧 = ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘) → ((vol‘𝑧) ≤ 0 ↔ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
246245ralrn 7108 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
24716, 243, 2463syl 18 . . . . . . . . . 10 (𝜑 → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
248247adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0 ↔ ∀𝑘 ∈ ℕ (vol‘((𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))‘𝑘)) ≤ 0))
249242, 248mpbird 257 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0)
250 ffn 6736 . . . . . . . . . 10 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
2514, 250ax-mp 5 . . . . . . . . 9 vol Fn dom vol
25227frnd 6744 . . . . . . . . . 10 (𝜑 → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
253252adantr 480 . . . . . . . . 9 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol)
254 breq1 5146 . . . . . . . . . 10 (𝑥 = (vol‘𝑧) → (𝑥 ≤ 0 ↔ (vol‘𝑧) ≤ 0))
255254ralima 7257 . . . . . . . . 9 ((vol Fn dom vol ∧ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))) ⊆ dom vol) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
256251, 253, 255sylancr 587 . . . . . . . 8 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0 ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))(vol‘𝑧) ≤ 0))
257249, 256mpbird 257 . . . . . . 7 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
258 imassrn 6089 . . . . . . . . 9 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ran vol
259 frn 6743 . . . . . . . . . . 11 (vol:dom vol⟶(0[,]+∞) → ran vol ⊆ (0[,]+∞))
2604, 259ax-mp 5 . . . . . . . . . 10 ran vol ⊆ (0[,]+∞)
261260, 3sstri 3993 . . . . . . . . 9 ran vol ⊆ ℝ*
262258, 261sstri 3993 . . . . . . . 8 (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ*
263 supxrleub 13368 . . . . . . . 8 (((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0))
264262, 38, 263mp2an 692 . . . . . . 7 (sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0 ↔ ∀𝑥 ∈ (vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞))))𝑥 ≤ 0)
265257, 264sylibr 234 . . . . . 6 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → sup((vol “ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))), ℝ*, < ) ≤ 0)
266128, 265eqbrtrd 5165 . . . . 5 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol*‘ ran (𝑛 ∈ ℕ ↦ (𝐹 “ ((1 / 𝑛)(,)+∞)))) ≤ 0)
2678, 37, 39, 93, 266xrletrd 13204 . . . 4 ((𝜑 ∧ ¬ 0 < (∫2𝐹)) → (vol‘𝐴) ≤ 0)
268267ex 412 . . 3 (𝜑 → (¬ 0 < (∫2𝐹) → (vol‘𝐴) ≤ 0))
269 xrlenlt 11326 . . . 4 (((vol‘𝐴) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
2707, 38, 269sylancl 586 . . 3 (𝜑 → ((vol‘𝐴) ≤ 0 ↔ ¬ 0 < (vol‘𝐴)))
271268, 270sylibd 239 . 2 (𝜑 → (¬ 0 < (∫2𝐹) → ¬ 0 < (vol‘𝐴)))
2721, 271mt4d 117 1 (𝜑 → 0 < (∫2𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951  ifcif 4525   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  r cofr 7696  supcsup 9480  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296   / cdiv 11920  cn 12266  +crp 13034  (,)cioo 13387  [,)cico 13389  [,]cicc 13390  vol*covol 25497  volcvol 25498  MblFncmbf 25649  2citg2 25651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-0p 25705
This theorem is referenced by:  itggt0  25879
  Copyright terms: Public domain W3C validator