MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Visualization version   GIF version

Theorem irredrmul 20444
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredrmul ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredrmul
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1136 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋𝐼)
2 simp1 1135 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑅 ∈ Ring)
3 simp3 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌𝑈)
4 irredrmul.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
5 eqid 2735 . . . . . . . . 9 (/r𝑅) = (/r𝑅)
64, 5unitdvcl 20422 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
763com23 1125 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
873expia 1120 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
92, 3, 8syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
10 irredn0.i . . . . . . . . 9 𝐼 = (Irred‘𝑅)
11 eqid 2735 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1210, 11irredcl 20441 . . . . . . . 8 (𝑋𝐼𝑋 ∈ (Base‘𝑅))
13123ad2ant2 1133 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
14 irredrmul.t . . . . . . . 8 · = (.r𝑅)
1511, 4, 5, 14dvrcan3 20427 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
162, 13, 3, 15syl3anc 1370 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
1716eleq1d 2824 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈𝑋𝑈))
189, 17sylibd 239 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈𝑋𝑈))
192ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring)
20 eldifi 4141 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅))
2120ad2antrl 728 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅))
223ad2antrr 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌𝑈)
2311, 4, 5dvrcl 20421 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
2419, 21, 22, 23syl3anc 1370 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
25 eldifn 4142 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦𝑈)
2625ad2antrl 728 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦𝑈)
274, 14unitmulcl 20397 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
28273com23 1125 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
29283expia 1120 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3019, 22, 29syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3111, 4, 5, 14dvrcan1 20426 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3219, 21, 22, 31syl3anc 1370 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3332eleq1d 2824 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈𝑦𝑈))
3430, 33sylibd 239 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈𝑦𝑈))
3526, 34mtod 198 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r𝑅)𝑌) ∈ 𝑈)
3624, 35eldifd 3974 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈))
37 simprr 773 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
3837oveq1d 7446 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = ((𝑋 · 𝑌)(/r𝑅)𝑌))
39 eldifi 4141 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅))
4039ad2antlr 727 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅))
4111, 4, 5, 14dvrass 20425 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈)) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4219, 40, 21, 22, 41syl13anc 1371 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4316ad2antrr 726 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
4438, 42, 433eqtr3d 2783 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋)
45 oveq2 7439 . . . . . . . . 9 (𝑧 = (𝑦(/r𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4645eqeq1d 2737 . . . . . . . 8 (𝑧 = (𝑦(/r𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋))
4746rspcev 3622 . . . . . . 7 (((𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4836, 44, 47syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4948rexlimdvaa 3154 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5049reximdva 3166 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5118, 50orim12d 966 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
5211, 4unitcl 20392 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
53523ad2ant3 1134 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
5411, 14ringcl 20268 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
552, 13, 53, 54syl3anc 1370 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
56 eqid 2735 . . . . 5 ((Base‘𝑅) ∖ 𝑈) = ((Base‘𝑅) ∖ 𝑈)
5711, 4, 10, 56, 14isnirred 20437 . . . 4 ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5855, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5911, 4, 10, 56, 14isnirred 20437 . . . 4 (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6013, 59syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6151, 58, 603imtr4d 294 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋𝐼))
621, 61mt4d 117 1 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  cdif 3960  cfv 6563  (class class class)co 7431  Basecbs 17245  .rcmulr 17299  Ringcrg 20251  Unitcui 20372  Irredcir 20373  /rcdvr 20417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-irred 20376  df-invr 20405  df-dvr 20418
This theorem is referenced by:  irredlmul  20445  irredneg  20447
  Copyright terms: Public domain W3C validator