| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1137 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐼) |
| 2 | | simp1 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) |
| 3 | | simp3 1138 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
| 4 | | irredrmul.u |
. . . . . . . . 9
⊢ 𝑈 = (Unit‘𝑅) |
| 5 | | eqid 2736 |
. . . . . . . . 9
⊢
(/r‘𝑅) = (/r‘𝑅) |
| 6 | 4, 5 | unitdvcl 20370 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈) |
| 7 | 6 | 3com23 1126 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈) |
| 8 | 7 | 3expia 1121 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈)) |
| 9 | 2, 3, 8 | syl2anc 584 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈)) |
| 10 | | irredn0.i |
. . . . . . . . 9
⊢ 𝐼 = (Irred‘𝑅) |
| 11 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 12 | 10, 11 | irredcl 20389 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (Base‘𝑅)) |
| 13 | 12 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
| 14 | | irredrmul.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
| 15 | 11, 4, 5, 14 | dvrcan3 20375 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
| 16 | 2, 13, 3, 15 | syl3anc 1373 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
| 17 | 16 | eleq1d 2820 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) |
| 18 | 9, 17 | sylibd 239 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
| 19 | 2 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring) |
| 20 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅)) |
| 21 | 20 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅)) |
| 22 | 3 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌 ∈ 𝑈) |
| 23 | 11, 4, 5 | dvrcl 20369 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → (𝑦(/r‘𝑅)𝑌) ∈ (Base‘𝑅)) |
| 24 | 19, 21, 22, 23 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r‘𝑅)𝑌) ∈ (Base‘𝑅)) |
| 25 | | eldifn 4112 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦 ∈ 𝑈) |
| 26 | 25 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦 ∈ 𝑈) |
| 27 | 4, 14 | unitmulcl 20345 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈) |
| 28 | 27 | 3com23 1126 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈) |
| 29 | 28 | 3expia 1121 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈)) |
| 30 | 19, 22, 29 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈)) |
| 31 | 11, 4, 5, 14 | dvrcan1 20374 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) = 𝑦) |
| 32 | 19, 21, 22, 31 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) = 𝑦) |
| 33 | 32 | eleq1d 2820 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
| 34 | 30, 33 | sylibd 239 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → 𝑦 ∈ 𝑈)) |
| 35 | 26, 34 | mtod 198 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈) |
| 36 | 24, 35 | eldifd 3942 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r‘𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈)) |
| 37 | | simprr 772 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) |
| 38 | 37 | oveq1d 7425 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = ((𝑋 · 𝑌)(/r‘𝑅)𝑌)) |
| 39 | | eldifi 4111 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
| 40 | 39 | ad2antlr 727 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅)) |
| 41 | 11, 4, 5, 14 | dvrass 20373 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈)) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
| 42 | 19, 40, 21, 22, 41 | syl13anc 1374 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
| 43 | 16 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
| 44 | 38, 42, 43 | 3eqtr3d 2779 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋) |
| 45 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦(/r‘𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
| 46 | 45 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑧 = (𝑦(/r‘𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋)) |
| 47 | 46 | rspcev 3606 |
. . . . . . 7
⊢ (((𝑦(/r‘𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋) |
| 48 | 36, 44, 47 | syl2anc 584 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋) |
| 49 | 48 | rexlimdvaa 3143 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)) |
| 50 | 49 | reximdva 3154 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)) |
| 51 | 18, 50 | orim12d 966 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
| 52 | 11, 4 | unitcl 20340 |
. . . . . 6
⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ (Base‘𝑅)) |
| 53 | 52 | 3ad2ant3 1135 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑅)) |
| 54 | 11, 14 | ringcl 20215 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅)) |
| 55 | 2, 13, 53, 54 | syl3anc 1373 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅)) |
| 56 | | eqid 2736 |
. . . . 5
⊢
((Base‘𝑅)
∖ 𝑈) =
((Base‘𝑅) ∖
𝑈) |
| 57 | 11, 4, 10, 56, 14 | isnirred 20385 |
. . . 4
⊢ ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)))) |
| 58 | 55, 57 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)))) |
| 59 | 11, 4, 10, 56, 14 | isnirred 20385 |
. . . 4
⊢ (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
| 60 | 13, 59 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
| 61 | 51, 58, 60 | 3imtr4d 294 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋 ∈ 𝐼)) |
| 62 | 1, 61 | mt4d 117 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) |