MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Visualization version   GIF version

Theorem irredrmul 19864
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredrmul ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredrmul
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋𝐼)
2 simp1 1134 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑅 ∈ Ring)
3 simp3 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌𝑈)
4 irredrmul.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
5 eqid 2738 . . . . . . . . 9 (/r𝑅) = (/r𝑅)
64, 5unitdvcl 19844 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
763com23 1124 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
873expia 1119 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
92, 3, 8syl2anc 583 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
10 irredn0.i . . . . . . . . 9 𝐼 = (Irred‘𝑅)
11 eqid 2738 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1210, 11irredcl 19861 . . . . . . . 8 (𝑋𝐼𝑋 ∈ (Base‘𝑅))
13123ad2ant2 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
14 irredrmul.t . . . . . . . 8 · = (.r𝑅)
1511, 4, 5, 14dvrcan3 19849 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
162, 13, 3, 15syl3anc 1369 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
1716eleq1d 2823 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈𝑋𝑈))
189, 17sylibd 238 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈𝑋𝑈))
192ad2antrr 722 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring)
20 eldifi 4057 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅))
2120ad2antrl 724 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅))
223ad2antrr 722 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌𝑈)
2311, 4, 5dvrcl 19843 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
2419, 21, 22, 23syl3anc 1369 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
25 eldifn 4058 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦𝑈)
2625ad2antrl 724 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦𝑈)
274, 14unitmulcl 19821 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
28273com23 1124 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
29283expia 1119 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3019, 22, 29syl2anc 583 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3111, 4, 5, 14dvrcan1 19848 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3219, 21, 22, 31syl3anc 1369 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3332eleq1d 2823 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈𝑦𝑈))
3430, 33sylibd 238 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈𝑦𝑈))
3526, 34mtod 197 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r𝑅)𝑌) ∈ 𝑈)
3624, 35eldifd 3894 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈))
37 simprr 769 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
3837oveq1d 7270 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = ((𝑋 · 𝑌)(/r𝑅)𝑌))
39 eldifi 4057 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅))
4039ad2antlr 723 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅))
4111, 4, 5, 14dvrass 19847 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈)) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4219, 40, 21, 22, 41syl13anc 1370 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4316ad2antrr 722 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
4438, 42, 433eqtr3d 2786 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋)
45 oveq2 7263 . . . . . . . . 9 (𝑧 = (𝑦(/r𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4645eqeq1d 2740 . . . . . . . 8 (𝑧 = (𝑦(/r𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋))
4746rspcev 3552 . . . . . . 7 (((𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4836, 44, 47syl2anc 583 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4948rexlimdvaa 3213 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5049reximdva 3202 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5118, 50orim12d 961 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
5211, 4unitcl 19816 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
53523ad2ant3 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
5411, 14ringcl 19715 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
552, 13, 53, 54syl3anc 1369 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
56 eqid 2738 . . . . 5 ((Base‘𝑅) ∖ 𝑈) = ((Base‘𝑅) ∖ 𝑈)
5711, 4, 10, 56, 14isnirred 19857 . . . 4 ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5855, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5911, 4, 10, 56, 14isnirred 19857 . . . 4 (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6013, 59syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6151, 58, 603imtr4d 293 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋𝐼))
621, 61mt4d 117 1 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  cdif 3880  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Ringcrg 19698  Unitcui 19796  Irredcir 19797  /rcdvr 19839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-irred 19800  df-invr 19829  df-dvr 19840
This theorem is referenced by:  irredlmul  19865  irredneg  19867
  Copyright terms: Public domain W3C validator