Step | Hyp | Ref
| Expression |
1 | | simp2 1135 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐼) |
2 | | simp1 1134 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) |
3 | | simp3 1136 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) |
4 | | irredrmul.u |
. . . . . . . . 9
⊢ 𝑈 = (Unit‘𝑅) |
5 | | eqid 2738 |
. . . . . . . . 9
⊢
(/r‘𝑅) = (/r‘𝑅) |
6 | 4, 5 | unitdvcl 19844 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈) |
7 | 6 | 3com23 1124 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈) |
8 | 7 | 3expia 1119 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈)) |
9 | 2, 3, 8 | syl2anc 583 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈)) |
10 | | irredn0.i |
. . . . . . . . 9
⊢ 𝐼 = (Irred‘𝑅) |
11 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
12 | 10, 11 | irredcl 19861 |
. . . . . . . 8
⊢ (𝑋 ∈ 𝐼 → 𝑋 ∈ (Base‘𝑅)) |
13 | 12 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ (Base‘𝑅)) |
14 | | irredrmul.t |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
15 | 11, 4, 5, 14 | dvrcan3 19849 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
16 | 2, 13, 3, 15 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
17 | 16 | eleq1d 2823 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (((𝑋 · 𝑌)(/r‘𝑅)𝑌) ∈ 𝑈 ↔ 𝑋 ∈ 𝑈)) |
18 | 9, 17 | sylibd 238 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → 𝑋 ∈ 𝑈)) |
19 | 2 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring) |
20 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅)) |
21 | 20 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅)) |
22 | 3 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌 ∈ 𝑈) |
23 | 11, 4, 5 | dvrcl 19843 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → (𝑦(/r‘𝑅)𝑌) ∈ (Base‘𝑅)) |
24 | 19, 21, 22, 23 | syl3anc 1369 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r‘𝑅)𝑌) ∈ (Base‘𝑅)) |
25 | | eldifn 4058 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦 ∈ 𝑈) |
26 | 25 | ad2antrl 724 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦 ∈ 𝑈) |
27 | 4, 14 | unitmulcl 19821 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈) |
28 | 27 | 3com23 1124 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈 ∧ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈) |
29 | 28 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈)) |
30 | 19, 22, 29 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈)) |
31 | 11, 4, 5, 14 | dvrcan1 19848 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) = 𝑦) |
32 | 19, 21, 22, 31 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) · 𝑌) = 𝑦) |
33 | 32 | eleq1d 2823 |
. . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r‘𝑅)𝑌) · 𝑌) ∈ 𝑈 ↔ 𝑦 ∈ 𝑈)) |
34 | 30, 33 | sylibd 238 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r‘𝑅)𝑌) ∈ 𝑈 → 𝑦 ∈ 𝑈)) |
35 | 26, 34 | mtod 197 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r‘𝑅)𝑌) ∈ 𝑈) |
36 | 24, 35 | eldifd 3894 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r‘𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈)) |
37 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌)) |
38 | 37 | oveq1d 7270 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = ((𝑋 · 𝑌)(/r‘𝑅)𝑌)) |
39 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅)) |
40 | 39 | ad2antlr 723 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅)) |
41 | 11, 4, 5, 14 | dvrass 19847 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌 ∈ 𝑈)) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
42 | 19, 40, 21, 22, 41 | syl13anc 1370 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r‘𝑅)𝑌) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
43 | 16 | ad2antrr 722 |
. . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r‘𝑅)𝑌) = 𝑋) |
44 | 38, 42, 43 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋) |
45 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = (𝑦(/r‘𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r‘𝑅)𝑌))) |
46 | 45 | eqeq1d 2740 |
. . . . . . . 8
⊢ (𝑧 = (𝑦(/r‘𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋)) |
47 | 46 | rspcev 3552 |
. . . . . . 7
⊢ (((𝑦(/r‘𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r‘𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋) |
48 | 36, 44, 47 | syl2anc 583 |
. . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋) |
49 | 48 | rexlimdvaa 3213 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)) |
50 | 49 | reximdva 3202 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)) |
51 | 18, 50 | orim12d 961 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
52 | 11, 4 | unitcl 19816 |
. . . . . 6
⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ (Base‘𝑅)) |
53 | 52 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ (Base‘𝑅)) |
54 | 11, 14 | ringcl 19715 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅)) |
55 | 2, 13, 53, 54 | syl3anc 1369 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅)) |
56 | | eqid 2738 |
. . . . 5
⊢
((Base‘𝑅)
∖ 𝑈) =
((Base‘𝑅) ∖
𝑈) |
57 | 11, 4, 10, 56, 14 | isnirred 19857 |
. . . 4
⊢ ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)))) |
58 | 55, 57 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)))) |
59 | 11, 4, 10, 56, 14 | isnirred 19857 |
. . . 4
⊢ (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
60 | 13, 59 | syl 17 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ 𝑋 ∈ 𝐼 ↔ (𝑋 ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))) |
61 | 51, 58, 60 | 3imtr4d 293 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋 ∈ 𝐼)) |
62 | 1, 61 | mt4d 117 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝐼) |