MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Visualization version   GIF version

Theorem irredrmul 19170
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredrmul ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredrmul
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1117 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋𝐼)
2 simp1 1116 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑅 ∈ Ring)
3 simp3 1118 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌𝑈)
4 irredrmul.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
5 eqid 2772 . . . . . . . . 9 (/r𝑅) = (/r𝑅)
64, 5unitdvcl 19150 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
763com23 1106 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
873expia 1101 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
92, 3, 8syl2anc 576 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
10 irredn0.i . . . . . . . . 9 𝐼 = (Irred‘𝑅)
11 eqid 2772 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1210, 11irredcl 19167 . . . . . . . 8 (𝑋𝐼𝑋 ∈ (Base‘𝑅))
13123ad2ant2 1114 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
14 irredrmul.t . . . . . . . 8 · = (.r𝑅)
1511, 4, 5, 14dvrcan3 19155 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
162, 13, 3, 15syl3anc 1351 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
1716eleq1d 2844 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈𝑋𝑈))
189, 17sylibd 231 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈𝑋𝑈))
192ad2antrr 713 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring)
20 eldifi 3989 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅))
2120ad2antrl 715 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅))
223ad2antrr 713 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌𝑈)
2311, 4, 5dvrcl 19149 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
2419, 21, 22, 23syl3anc 1351 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
25 eldifn 3990 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦𝑈)
2625ad2antrl 715 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦𝑈)
274, 14unitmulcl 19127 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
28273com23 1106 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
29283expia 1101 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3019, 22, 29syl2anc 576 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3111, 4, 5, 14dvrcan1 19154 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3219, 21, 22, 31syl3anc 1351 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3332eleq1d 2844 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈𝑦𝑈))
3430, 33sylibd 231 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈𝑦𝑈))
3526, 34mtod 190 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r𝑅)𝑌) ∈ 𝑈)
3624, 35eldifd 3836 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈))
37 simprr 760 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
3837oveq1d 6985 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = ((𝑋 · 𝑌)(/r𝑅)𝑌))
39 eldifi 3989 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅))
4039ad2antlr 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅))
4111, 4, 5, 14dvrass 19153 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈)) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4219, 40, 21, 22, 41syl13anc 1352 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4316ad2antrr 713 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
4438, 42, 433eqtr3d 2816 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋)
45 oveq2 6978 . . . . . . . . 9 (𝑧 = (𝑦(/r𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4645eqeq1d 2774 . . . . . . . 8 (𝑧 = (𝑦(/r𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋))
4746rspcev 3529 . . . . . . 7 (((𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4836, 44, 47syl2anc 576 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4948rexlimdvaa 3224 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5049reximdva 3213 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5118, 50orim12d 947 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
5211, 4unitcl 19122 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
53523ad2ant3 1115 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
5411, 14ringcl 19024 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
552, 13, 53, 54syl3anc 1351 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
56 eqid 2772 . . . . 5 ((Base‘𝑅) ∖ 𝑈) = ((Base‘𝑅) ∖ 𝑈)
5711, 4, 10, 56, 14isnirred 19163 . . . 4 ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5855, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5911, 4, 10, 56, 14isnirred 19163 . . . 4 (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6013, 59syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6151, 58, 603imtr4d 286 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋𝐼))
621, 61mt4d 154 1 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068   = wceq 1507  wcel 2048  wrex 3083  cdif 3822  cfv 6182  (class class class)co 6970  Basecbs 16329  .rcmulr 16412  Ringcrg 19010  Unitcui 19102  Irredcir 19103  /rcdvr 19145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-mgp 18953  df-ur 18965  df-ring 19012  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-irred 19106  df-invr 19135  df-dvr 19146
This theorem is referenced by:  irredlmul  19171  irredneg  19173
  Copyright terms: Public domain W3C validator