Step | Hyp | Ref
| Expression |
1 | | simp2 1137 |
. 2
β’ ((π
β Ring β§ π β πΌ β§ π β π) β π β πΌ) |
2 | | simp1 1136 |
. . . . . 6
β’ ((π
β Ring β§ π β πΌ β§ π β π) β π
β Ring) |
3 | | simp3 1138 |
. . . . . 6
β’ ((π
β Ring β§ π β πΌ β§ π β π) β π β π) |
4 | | irredrmul.u |
. . . . . . . . 9
β’ π = (Unitβπ
) |
5 | | eqid 2732 |
. . . . . . . . 9
β’
(/rβπ
) = (/rβπ
) |
6 | 4, 5 | unitdvcl 20211 |
. . . . . . . 8
β’ ((π
β Ring β§ (π Β· π) β π β§ π β π) β ((π Β· π)(/rβπ
)π) β π) |
7 | 6 | 3com23 1126 |
. . . . . . 7
β’ ((π
β Ring β§ π β π β§ (π Β· π) β π) β ((π Β· π)(/rβπ
)π) β π) |
8 | 7 | 3expia 1121 |
. . . . . 6
β’ ((π
β Ring β§ π β π) β ((π Β· π) β π β ((π Β· π)(/rβπ
)π) β π)) |
9 | 2, 3, 8 | syl2anc 584 |
. . . . 5
β’ ((π
β Ring β§ π β πΌ β§ π β π) β ((π Β· π) β π β ((π Β· π)(/rβπ
)π) β π)) |
10 | | irredn0.i |
. . . . . . . . 9
β’ πΌ = (Irredβπ
) |
11 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ
) =
(Baseβπ
) |
12 | 10, 11 | irredcl 20230 |
. . . . . . . 8
β’ (π β πΌ β π β (Baseβπ
)) |
13 | 12 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π
β Ring β§ π β πΌ β§ π β π) β π β (Baseβπ
)) |
14 | | irredrmul.t |
. . . . . . . 8
β’ Β· =
(.rβπ
) |
15 | 11, 4, 5, 14 | dvrcan3 20216 |
. . . . . . 7
β’ ((π
β Ring β§ π β (Baseβπ
) β§ π β π) β ((π Β· π)(/rβπ
)π) = π) |
16 | 2, 13, 3, 15 | syl3anc 1371 |
. . . . . 6
β’ ((π
β Ring β§ π β πΌ β§ π β π) β ((π Β· π)(/rβπ
)π) = π) |
17 | 16 | eleq1d 2818 |
. . . . 5
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (((π Β· π)(/rβπ
)π) β π β π β π)) |
18 | 9, 17 | sylibd 238 |
. . . 4
β’ ((π
β Ring β§ π β πΌ β§ π β π) β ((π Β· π) β π β π β π)) |
19 | 2 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β π
β Ring) |
20 | | eldifi 4125 |
. . . . . . . . . 10
β’ (π¦ β ((Baseβπ
) β π) β π¦ β (Baseβπ
)) |
21 | 20 | ad2antrl 726 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β π¦ β (Baseβπ
)) |
22 | 3 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β π β π) |
23 | 11, 4, 5 | dvrcl 20210 |
. . . . . . . . 9
β’ ((π
β Ring β§ π¦ β (Baseβπ
) β§ π β π) β (π¦(/rβπ
)π) β (Baseβπ
)) |
24 | 19, 21, 22, 23 | syl3anc 1371 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β (π¦(/rβπ
)π) β (Baseβπ
)) |
25 | | eldifn 4126 |
. . . . . . . . . 10
β’ (π¦ β ((Baseβπ
) β π) β Β¬ π¦ β π) |
26 | 25 | ad2antrl 726 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β Β¬ π¦ β π) |
27 | 4, 14 | unitmulcl 20186 |
. . . . . . . . . . . . 13
β’ ((π
β Ring β§ (π¦(/rβπ
)π) β π β§ π β π) β ((π¦(/rβπ
)π) Β· π) β π) |
28 | 27 | 3com23 1126 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§ π β π β§ (π¦(/rβπ
)π) β π) β ((π¦(/rβπ
)π) Β· π) β π) |
29 | 28 | 3expia 1121 |
. . . . . . . . . . 11
β’ ((π
β Ring β§ π β π) β ((π¦(/rβπ
)π) β π β ((π¦(/rβπ
)π) Β· π) β π)) |
30 | 19, 22, 29 | syl2anc 584 |
. . . . . . . . . 10
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π¦(/rβπ
)π) β π β ((π¦(/rβπ
)π) Β· π) β π)) |
31 | 11, 4, 5, 14 | dvrcan1 20215 |
. . . . . . . . . . . 12
β’ ((π
β Ring β§ π¦ β (Baseβπ
) β§ π β π) β ((π¦(/rβπ
)π) Β· π) = π¦) |
32 | 19, 21, 22, 31 | syl3anc 1371 |
. . . . . . . . . . 11
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π¦(/rβπ
)π) Β· π) = π¦) |
33 | 32 | eleq1d 2818 |
. . . . . . . . . 10
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β (((π¦(/rβπ
)π) Β· π) β π β π¦ β π)) |
34 | 30, 33 | sylibd 238 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π¦(/rβπ
)π) β π β π¦ β π)) |
35 | 26, 34 | mtod 197 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β Β¬ (π¦(/rβπ
)π) β π) |
36 | 24, 35 | eldifd 3958 |
. . . . . . 7
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β (π¦(/rβπ
)π) β ((Baseβπ
) β π)) |
37 | | simprr 771 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β (π₯ Β· π¦) = (π Β· π)) |
38 | 37 | oveq1d 7420 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π₯ Β· π¦)(/rβπ
)π) = ((π Β· π)(/rβπ
)π)) |
39 | | eldifi 4125 |
. . . . . . . . . 10
β’ (π₯ β ((Baseβπ
) β π) β π₯ β (Baseβπ
)) |
40 | 39 | ad2antlr 725 |
. . . . . . . . 9
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β π₯ β (Baseβπ
)) |
41 | 11, 4, 5, 14 | dvrass 20214 |
. . . . . . . . 9
β’ ((π
β Ring β§ (π₯ β (Baseβπ
) β§ π¦ β (Baseβπ
) β§ π β π)) β ((π₯ Β· π¦)(/rβπ
)π) = (π₯ Β· (π¦(/rβπ
)π))) |
42 | 19, 40, 21, 22, 41 | syl13anc 1372 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π₯ Β· π¦)(/rβπ
)π) = (π₯ Β· (π¦(/rβπ
)π))) |
43 | 16 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β ((π Β· π)(/rβπ
)π) = π) |
44 | 38, 42, 43 | 3eqtr3d 2780 |
. . . . . . 7
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β (π₯ Β· (π¦(/rβπ
)π)) = π) |
45 | | oveq2 7413 |
. . . . . . . . 9
β’ (π§ = (π¦(/rβπ
)π) β (π₯ Β· π§) = (π₯ Β· (π¦(/rβπ
)π))) |
46 | 45 | eqeq1d 2734 |
. . . . . . . 8
β’ (π§ = (π¦(/rβπ
)π) β ((π₯ Β· π§) = π β (π₯ Β· (π¦(/rβπ
)π)) = π)) |
47 | 46 | rspcev 3612 |
. . . . . . 7
β’ (((π¦(/rβπ
)π) β ((Baseβπ
) β π) β§ (π₯ Β· (π¦(/rβπ
)π)) = π) β βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π) |
48 | 36, 44, 47 | syl2anc 584 |
. . . . . 6
β’ ((((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β§ (π¦ β ((Baseβπ
) β π) β§ (π₯ Β· π¦) = (π Β· π))) β βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π) |
49 | 48 | rexlimdvaa 3156 |
. . . . 5
β’ (((π
β Ring β§ π β πΌ β§ π β π) β§ π₯ β ((Baseβπ
) β π)) β (βπ¦ β ((Baseβπ
) β π)(π₯ Β· π¦) = (π Β· π) β βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π)) |
50 | 49 | reximdva 3168 |
. . . 4
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (βπ₯ β ((Baseβπ
) β π)βπ¦ β ((Baseβπ
) β π)(π₯ Β· π¦) = (π Β· π) β βπ₯ β ((Baseβπ
) β π)βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π)) |
51 | 18, 50 | orim12d 963 |
. . 3
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (((π Β· π) β π β¨ βπ₯ β ((Baseβπ
) β π)βπ¦ β ((Baseβπ
) β π)(π₯ Β· π¦) = (π Β· π)) β (π β π β¨ βπ₯ β ((Baseβπ
) β π)βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π))) |
52 | 11, 4 | unitcl 20181 |
. . . . . 6
β’ (π β π β π β (Baseβπ
)) |
53 | 52 | 3ad2ant3 1135 |
. . . . 5
β’ ((π
β Ring β§ π β πΌ β§ π β π) β π β (Baseβπ
)) |
54 | 11, 14 | ringcl 20066 |
. . . . 5
β’ ((π
β Ring β§ π β (Baseβπ
) β§ π β (Baseβπ
)) β (π Β· π) β (Baseβπ
)) |
55 | 2, 13, 53, 54 | syl3anc 1371 |
. . . 4
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (π Β· π) β (Baseβπ
)) |
56 | | eqid 2732 |
. . . . 5
β’
((Baseβπ
)
β π) =
((Baseβπ
) β
π) |
57 | 11, 4, 10, 56, 14 | isnirred 20226 |
. . . 4
β’ ((π Β· π) β (Baseβπ
) β (Β¬ (π Β· π) β πΌ β ((π Β· π) β π β¨ βπ₯ β ((Baseβπ
) β π)βπ¦ β ((Baseβπ
) β π)(π₯ Β· π¦) = (π Β· π)))) |
58 | 55, 57 | syl 17 |
. . 3
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (Β¬ (π Β· π) β πΌ β ((π Β· π) β π β¨ βπ₯ β ((Baseβπ
) β π)βπ¦ β ((Baseβπ
) β π)(π₯ Β· π¦) = (π Β· π)))) |
59 | 11, 4, 10, 56, 14 | isnirred 20226 |
. . . 4
β’ (π β (Baseβπ
) β (Β¬ π β πΌ β (π β π β¨ βπ₯ β ((Baseβπ
) β π)βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π))) |
60 | 13, 59 | syl 17 |
. . 3
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (Β¬ π β πΌ β (π β π β¨ βπ₯ β ((Baseβπ
) β π)βπ§ β ((Baseβπ
) β π)(π₯ Β· π§) = π))) |
61 | 51, 58, 60 | 3imtr4d 293 |
. 2
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (Β¬ (π Β· π) β πΌ β Β¬ π β πΌ)) |
62 | 1, 61 | mt4d 117 |
1
β’ ((π
β Ring β§ π β πΌ β§ π β π) β (π Β· π) β πΌ) |