MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredrmul Structured version   Visualization version   GIF version

Theorem irredrmul 20136
Description: The product of an irreducible element and a unit is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredrmul ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredrmul
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋𝐼)
2 simp1 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑅 ∈ Ring)
3 simp3 1138 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌𝑈)
4 irredrmul.u . . . . . . . . 9 𝑈 = (Unit‘𝑅)
5 eqid 2736 . . . . . . . . 9 (/r𝑅) = (/r𝑅)
64, 5unitdvcl 20116 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑋 · 𝑌) ∈ 𝑈𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
763com23 1126 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑋 · 𝑌) ∈ 𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈)
873expia 1121 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
92, 3, 8syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈 → ((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈))
10 irredn0.i . . . . . . . . 9 𝐼 = (Irred‘𝑅)
11 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1210, 11irredcl 20133 . . . . . . . 8 (𝑋𝐼𝑋 ∈ (Base‘𝑅))
13123ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑋 ∈ (Base‘𝑅))
14 irredrmul.t . . . . . . . 8 · = (.r𝑅)
1511, 4, 5, 14dvrcan3 20121 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
162, 13, 3, 15syl3anc 1371 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
1716eleq1d 2822 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌)(/r𝑅)𝑌) ∈ 𝑈𝑋𝑈))
189, 17sylibd 238 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → ((𝑋 · 𝑌) ∈ 𝑈𝑋𝑈))
192ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑅 ∈ Ring)
20 eldifi 4086 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑦 ∈ (Base‘𝑅))
2120ad2antrl 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑦 ∈ (Base‘𝑅))
223ad2antrr 724 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑌𝑈)
2311, 4, 5dvrcl 20115 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
2419, 21, 22, 23syl3anc 1371 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ (Base‘𝑅))
25 eldifn 4087 . . . . . . . . . 10 (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) → ¬ 𝑦𝑈)
2625ad2antrl 726 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ 𝑦𝑈)
274, 14unitmulcl 20093 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
28273com23 1126 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑌𝑈 ∧ (𝑦(/r𝑅)𝑌) ∈ 𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈)
29283expia 1121 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3019, 22, 29syl2anc 584 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈 → ((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈))
3111, 4, 5, 14dvrcan1 20120 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3219, 21, 22, 31syl3anc 1371 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) · 𝑌) = 𝑦)
3332eleq1d 2822 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (((𝑦(/r𝑅)𝑌) · 𝑌) ∈ 𝑈𝑦𝑈))
3430, 33sylibd 238 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑦(/r𝑅)𝑌) ∈ 𝑈𝑦𝑈))
3526, 34mtod 197 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ¬ (𝑦(/r𝑅)𝑌) ∈ 𝑈)
3624, 35eldifd 3921 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈))
37 simprr 771 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · 𝑦) = (𝑋 · 𝑌))
3837oveq1d 7372 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = ((𝑋 · 𝑌)(/r𝑅)𝑌))
39 eldifi 4086 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ 𝑈) → 𝑥 ∈ (Base‘𝑅))
4039ad2antlr 725 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → 𝑥 ∈ (Base‘𝑅))
4111, 4, 5, 14dvrass 20119 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑌𝑈)) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4219, 40, 21, 22, 41syl13anc 1372 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑥 · 𝑦)(/r𝑅)𝑌) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4316ad2antrr 724 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ((𝑋 · 𝑌)(/r𝑅)𝑌) = 𝑋)
4438, 42, 433eqtr3d 2784 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋)
45 oveq2 7365 . . . . . . . . 9 (𝑧 = (𝑦(/r𝑅)𝑌) → (𝑥 · 𝑧) = (𝑥 · (𝑦(/r𝑅)𝑌)))
4645eqeq1d 2738 . . . . . . . 8 (𝑧 = (𝑦(/r𝑅)𝑌) → ((𝑥 · 𝑧) = 𝑋 ↔ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋))
4746rspcev 3581 . . . . . . 7 (((𝑦(/r𝑅)𝑌) ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · (𝑦(/r𝑅)𝑌)) = 𝑋) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4836, 44, 47syl2anc 584 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) ∧ (𝑦 ∈ ((Base‘𝑅) ∖ 𝑈) ∧ (𝑥 · 𝑦) = (𝑋 · 𝑌))) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)
4948rexlimdvaa 3153 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) ∧ 𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)) → (∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5049reximdva 3165 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌) → ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋))
5118, 50orim12d 963 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌)) → (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
5211, 4unitcl 20088 . . . . . 6 (𝑌𝑈𝑌 ∈ (Base‘𝑅))
53523ad2ant3 1135 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → 𝑌 ∈ (Base‘𝑅))
5411, 14ringcl 19981 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑌 ∈ (Base‘𝑅)) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
552, 13, 53, 54syl3anc 1371 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ (Base‘𝑅))
56 eqid 2736 . . . . 5 ((Base‘𝑅) ∖ 𝑈) = ((Base‘𝑅) ∖ 𝑈)
5711, 4, 10, 56, 14isnirred 20129 . . . 4 ((𝑋 · 𝑌) ∈ (Base‘𝑅) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5855, 57syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 ↔ ((𝑋 · 𝑌) ∈ 𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑦 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑦) = (𝑋 · 𝑌))))
5911, 4, 10, 56, 14isnirred 20129 . . . 4 (𝑋 ∈ (Base‘𝑅) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6013, 59syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ 𝑋𝐼 ↔ (𝑋𝑈 ∨ ∃𝑥 ∈ ((Base‘𝑅) ∖ 𝑈)∃𝑧 ∈ ((Base‘𝑅) ∖ 𝑈)(𝑥 · 𝑧) = 𝑋)))
6151, 58, 603imtr4d 293 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (¬ (𝑋 · 𝑌) ∈ 𝐼 → ¬ 𝑋𝐼))
621, 61mt4d 117 1 ((𝑅 ∈ Ring ∧ 𝑋𝐼𝑌𝑈) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  cdif 3907  cfv 6496  (class class class)co 7357  Basecbs 17083  .rcmulr 17134  Ringcrg 19964  Unitcui 20068  Irredcir 20069  /rcdvr 20111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-irred 20072  df-invr 20101  df-dvr 20112
This theorem is referenced by:  irredlmul  20137  irredneg  20139
  Copyright terms: Public domain W3C validator