MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl2 Structured version   Visualization version   GIF version

Theorem ioorcl2 25321
Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorcl2 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))

Proof of Theorem ioorcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4345 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴(,)𝐵))
2 elioore 13358 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
32adantr 479 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ)
4 peano2re 11391 . . . . . . . . . 10 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
54adantl 480 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
63, 5resubcld 11646 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
76rexrd 11268 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
8 eliooxr 13386 . . . . . . . . 9 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
98adantr 479 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 493 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ*)
113rexrd 11268 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ*)
12 ltp1 12058 . . . . . . . . 9 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
1312adantl 480 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
14 0red 11221 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ∈ ℝ)
15 simpr 483 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
16 ioossre 13389 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
17 ovolge0 25230 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ⊆ ℝ → 0 ≤ (vol*‘(𝐴(,)𝐵)))
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ (vol*‘(𝐴(,)𝐵)))
19 lep1 12059 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2019adantl 480 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2114, 15, 5, 18, 20letrd 11375 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
223, 5subge02d 11810 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧))
2321, 22mpbid 231 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧)
24 ovolioo 25317 . . . . . . . . . . . . . 14 (((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
256, 3, 23, 24syl3anc 1369 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
263recnd 11246 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℂ)
275recnd 11246 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℂ)
2826, 27nncand 11580 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) = ((vol*‘(𝐴(,)𝐵)) + 1))
2925, 28eqtrd 2770 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
3029adantr 479 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
31 iooss1 13363 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
3210, 31sylan 578 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
339simprd 494 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ*)
34 eliooord 13387 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑧𝑧 < 𝐵))
3534adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 < 𝑧𝑧 < 𝐵))
3635simprd 494 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 < 𝐵)
3711, 33, 36xrltled 13133 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧𝐵)
38 iooss2 13364 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
3933, 37, 38syl2anc 582 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4039adantr 479 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4132, 40sstrd 3991 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵))
42 ovolss 25234 . . . . . . . . . . . 12 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4341, 16, 42sylancl 584 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4430, 43eqbrtrrd 5171 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
4544ex 411 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
4610, 7xrlenltd 11284 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ↔ ¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴))
475, 15lenltd 11364 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)) ↔ ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4845, 46, 473imtr3d 292 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴 → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4913, 48mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴)
5035simpld 493 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 < 𝑧)
51 xrre2 13153 . . . . . . 7 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴𝐴 < 𝑧)) → 𝐴 ∈ ℝ)
527, 10, 11, 49, 50, 51syl32anc 1376 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ)
533, 5readdcld 11247 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
5453rexrd 11268 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
553, 5addge01d 11806 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
5621, 55mpbid 231 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
57 ovolioo 25317 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
583, 53, 56, 57syl3anc 1369 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
5926, 27pncan2d 11577 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧) = ((vol*‘(𝐴(,)𝐵)) + 1))
6058, 59eqtrd 2770 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
6160adantr 479 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
62 iooss2 13364 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6333, 62sylan 578 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6410, 11, 50xrltled 13133 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴𝑧)
65 iooss1 13363 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴𝑧) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6610, 64, 65syl2anc 582 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6766adantr 479 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6863, 67sstrd 3991 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵))
69 ovolss 25234 . . . . . . . . . . . 12 (((𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7068, 16, 69sylancl 584 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7161, 70eqbrtrrd 5171 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
7271ex 411 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
7354, 33xrlenltd 11284 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
7472, 73, 473imtr3d 292 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
7513, 74mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
76 xrre2 13153 . . . . . . 7 (((𝑧 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*) ∧ (𝑧 < 𝐵𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) → 𝐵 ∈ ℝ)
7711, 33, 54, 36, 75, 76syl32anc 1376 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ)
7852, 77jca 510 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
7978ex 411 . . . 4 (𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8079exlimiv 1931 . . 3 (∃𝑧 𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
811, 80sylbi 216 . 2 ((𝐴(,)𝐵) ≠ ∅ → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8281imp 405 1 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  wne 2938  wss 3947  c0 4321   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  *cxr 11251   < clt 11252  cle 11253  cmin 11448  (,)cioo 13328  vol*covol 25211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-rest 17372  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-top 22616  df-topon 22633  df-bases 22669  df-cmp 23111  df-ovol 25213  df-vol 25214
This theorem is referenced by:  ioorcl  25326
  Copyright terms: Public domain W3C validator