MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl2 Structured version   Visualization version   GIF version

Theorem ioorcl2 24176
Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorcl2 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))

Proof of Theorem ioorcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4260 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴(,)𝐵))
2 elioore 12756 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
32adantr 484 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ)
4 peano2re 10802 . . . . . . . . . 10 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
54adantl 485 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
63, 5resubcld 11057 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
76rexrd 10680 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
8 eliooxr 12783 . . . . . . . . 9 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
98adantr 484 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 498 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ*)
113rexrd 10680 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ*)
12 ltp1 11469 . . . . . . . . 9 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
1312adantl 485 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
14 0red 10633 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ∈ ℝ)
15 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
16 ioossre 12786 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
17 ovolge0 24085 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ⊆ ℝ → 0 ≤ (vol*‘(𝐴(,)𝐵)))
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ (vol*‘(𝐴(,)𝐵)))
19 lep1 11470 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2019adantl 485 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2114, 15, 5, 18, 20letrd 10786 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
223, 5subge02d 11221 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧))
2321, 22mpbid 235 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧)
24 ovolioo 24172 . . . . . . . . . . . . . 14 (((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
256, 3, 23, 24syl3anc 1368 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
263recnd 10658 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℂ)
275recnd 10658 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℂ)
2826, 27nncand 10991 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) = ((vol*‘(𝐴(,)𝐵)) + 1))
2925, 28eqtrd 2833 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
3029adantr 484 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
31 iooss1 12761 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
3210, 31sylan 583 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
339simprd 499 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ*)
34 eliooord 12784 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑧𝑧 < 𝐵))
3534adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 < 𝑧𝑧 < 𝐵))
3635simprd 499 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 < 𝐵)
3711, 33, 36xrltled 12531 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧𝐵)
38 iooss2 12762 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
3933, 37, 38syl2anc 587 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4039adantr 484 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4132, 40sstrd 3925 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵))
42 ovolss 24089 . . . . . . . . . . . 12 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4341, 16, 42sylancl 589 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4430, 43eqbrtrrd 5054 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
4544ex 416 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
4610, 7xrlenltd 10696 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ↔ ¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴))
475, 15lenltd 10775 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)) ↔ ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4845, 46, 473imtr3d 296 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴 → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4913, 48mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴)
5035simpld 498 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 < 𝑧)
51 xrre2 12551 . . . . . . 7 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴𝐴 < 𝑧)) → 𝐴 ∈ ℝ)
527, 10, 11, 49, 50, 51syl32anc 1375 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ)
533, 5readdcld 10659 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
5453rexrd 10680 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
553, 5addge01d 11217 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
5621, 55mpbid 235 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
57 ovolioo 24172 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
583, 53, 56, 57syl3anc 1368 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
5926, 27pncan2d 10988 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧) = ((vol*‘(𝐴(,)𝐵)) + 1))
6058, 59eqtrd 2833 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
6160adantr 484 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
62 iooss2 12762 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6333, 62sylan 583 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6410, 11, 50xrltled 12531 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴𝑧)
65 iooss1 12761 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴𝑧) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6610, 64, 65syl2anc 587 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6766adantr 484 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6863, 67sstrd 3925 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵))
69 ovolss 24089 . . . . . . . . . . . 12 (((𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7068, 16, 69sylancl 589 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7161, 70eqbrtrrd 5054 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
7271ex 416 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
7354, 33xrlenltd 10696 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
7472, 73, 473imtr3d 296 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
7513, 74mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
76 xrre2 12551 . . . . . . 7 (((𝑧 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*) ∧ (𝑧 < 𝐵𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) → 𝐵 ∈ ℝ)
7711, 33, 54, 36, 75, 76syl32anc 1375 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ)
7852, 77jca 515 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
7978ex 416 . . . 4 (𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8079exlimiv 1931 . . 3 (∃𝑧 𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
811, 80sylbi 220 . 2 ((𝐴(,)𝐵) ≠ ∅ → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8281imp 410 1 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wne 2987  wss 3881  c0 4243   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   < clt 10664  cle 10665  cmin 10859  (,)cioo 12726  vol*covol 24066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-rest 16688  df-topgen 16709  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-top 21499  df-topon 21516  df-bases 21551  df-cmp 21992  df-ovol 24068  df-vol 24069
This theorem is referenced by:  ioorcl  24181
  Copyright terms: Public domain W3C validator