MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl2 Structured version   Visualization version   GIF version

Theorem ioorcl2 25498
Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorcl2 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))

Proof of Theorem ioorcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4303 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴(,)𝐵))
2 elioore 13272 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
32adantr 480 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ)
4 peano2re 11283 . . . . . . . . . 10 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
54adantl 481 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
63, 5resubcld 11542 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
76rexrd 11159 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
8 eliooxr 13301 . . . . . . . . 9 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
98adantr 480 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 494 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ*)
113rexrd 11159 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ*)
12 ltp1 11958 . . . . . . . . 9 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
1312adantl 481 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
14 0red 11112 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ∈ ℝ)
15 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
16 ioossre 13304 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
17 ovolge0 25407 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ⊆ ℝ → 0 ≤ (vol*‘(𝐴(,)𝐵)))
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ (vol*‘(𝐴(,)𝐵)))
19 lep1 11959 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2114, 15, 5, 18, 20letrd 11267 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
223, 5subge02d 11706 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧))
2321, 22mpbid 232 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧)
24 ovolioo 25494 . . . . . . . . . . . . . 14 (((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
256, 3, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
263recnd 11137 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℂ)
275recnd 11137 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℂ)
2826, 27nncand 11474 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) = ((vol*‘(𝐴(,)𝐵)) + 1))
2925, 28eqtrd 2766 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
3029adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
31 iooss1 13277 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
3210, 31sylan 580 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
339simprd 495 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ*)
34 eliooord 13302 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑧𝑧 < 𝐵))
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 < 𝑧𝑧 < 𝐵))
3635simprd 495 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 < 𝐵)
3711, 33, 36xrltled 13046 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧𝐵)
38 iooss2 13278 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
3933, 37, 38syl2anc 584 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4039adantr 480 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4132, 40sstrd 3945 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵))
42 ovolss 25411 . . . . . . . . . . . 12 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4341, 16, 42sylancl 586 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4430, 43eqbrtrrd 5115 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
4544ex 412 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
4610, 7xrlenltd 11175 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ↔ ¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴))
475, 15lenltd 11256 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)) ↔ ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4845, 46, 473imtr3d 293 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴 → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4913, 48mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴)
5035simpld 494 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 < 𝑧)
51 xrre2 13066 . . . . . . 7 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴𝐴 < 𝑧)) → 𝐴 ∈ ℝ)
527, 10, 11, 49, 50, 51syl32anc 1380 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ)
533, 5readdcld 11138 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
5453rexrd 11159 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
553, 5addge01d 11702 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
5621, 55mpbid 232 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
57 ovolioo 25494 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
583, 53, 56, 57syl3anc 1373 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
5926, 27pncan2d 11471 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧) = ((vol*‘(𝐴(,)𝐵)) + 1))
6058, 59eqtrd 2766 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
6160adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
62 iooss2 13278 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6333, 62sylan 580 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6410, 11, 50xrltled 13046 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴𝑧)
65 iooss1 13277 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴𝑧) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6610, 64, 65syl2anc 584 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6766adantr 480 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6863, 67sstrd 3945 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵))
69 ovolss 25411 . . . . . . . . . . . 12 (((𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7068, 16, 69sylancl 586 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7161, 70eqbrtrrd 5115 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
7271ex 412 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
7354, 33xrlenltd 11175 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
7472, 73, 473imtr3d 293 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
7513, 74mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
76 xrre2 13066 . . . . . . 7 (((𝑧 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*) ∧ (𝑧 < 𝐵𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) → 𝐵 ∈ ℝ)
7711, 33, 54, 36, 75, 76syl32anc 1380 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ)
7852, 77jca 511 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
7978ex 412 . . . 4 (𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8079exlimiv 1931 . . 3 (∃𝑧 𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
811, 80sylbi 217 . 2 ((𝐴(,)𝐵) ≠ ∅ → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8281imp 406 1 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wss 3902  c0 4283   class class class wbr 5091  cfv 6481  (class class class)co 7346  cr 11002  0cc0 11003  1c1 11004   + caddc 11006  *cxr 11142   < clt 11143  cle 11144  cmin 11341  (,)cioo 13242  vol*covol 25388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-rlim 15393  df-sum 15591  df-rest 17323  df-topgen 17344  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-top 22807  df-topon 22824  df-bases 22859  df-cmp 23300  df-ovol 25390  df-vol 25391
This theorem is referenced by:  ioorcl  25503
  Copyright terms: Public domain W3C validator