MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl2 Structured version   Visualization version   GIF version

Theorem ioorcl2 25489
Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorcl2 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))

Proof of Theorem ioorcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4306 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴(,)𝐵))
2 elioore 13296 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
32adantr 480 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ)
4 peano2re 11307 . . . . . . . . . 10 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
54adantl 481 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
63, 5resubcld 11566 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
76rexrd 11184 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
8 eliooxr 13325 . . . . . . . . 9 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
98adantr 480 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 494 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ*)
113rexrd 11184 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ*)
12 ltp1 11982 . . . . . . . . 9 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
1312adantl 481 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
14 0red 11137 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ∈ ℝ)
15 simpr 484 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
16 ioossre 13328 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
17 ovolge0 25398 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ⊆ ℝ → 0 ≤ (vol*‘(𝐴(,)𝐵)))
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ (vol*‘(𝐴(,)𝐵)))
19 lep1 11983 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2019adantl 481 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2114, 15, 5, 18, 20letrd 11291 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
223, 5subge02d 11730 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧))
2321, 22mpbid 232 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧)
24 ovolioo 25485 . . . . . . . . . . . . . 14 (((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
256, 3, 23, 24syl3anc 1373 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
263recnd 11162 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℂ)
275recnd 11162 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℂ)
2826, 27nncand 11498 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) = ((vol*‘(𝐴(,)𝐵)) + 1))
2925, 28eqtrd 2764 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
3029adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
31 iooss1 13301 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
3210, 31sylan 580 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
339simprd 495 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ*)
34 eliooord 13326 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑧𝑧 < 𝐵))
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 < 𝑧𝑧 < 𝐵))
3635simprd 495 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 < 𝐵)
3711, 33, 36xrltled 13070 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧𝐵)
38 iooss2 13302 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
3933, 37, 38syl2anc 584 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4039adantr 480 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4132, 40sstrd 3948 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵))
42 ovolss 25402 . . . . . . . . . . . 12 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4341, 16, 42sylancl 586 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4430, 43eqbrtrrd 5119 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
4544ex 412 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
4610, 7xrlenltd 11200 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ↔ ¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴))
475, 15lenltd 11280 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)) ↔ ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4845, 46, 473imtr3d 293 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴 → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4913, 48mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴)
5035simpld 494 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 < 𝑧)
51 xrre2 13090 . . . . . . 7 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴𝐴 < 𝑧)) → 𝐴 ∈ ℝ)
527, 10, 11, 49, 50, 51syl32anc 1380 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ)
533, 5readdcld 11163 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
5453rexrd 11184 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
553, 5addge01d 11726 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
5621, 55mpbid 232 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
57 ovolioo 25485 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
583, 53, 56, 57syl3anc 1373 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
5926, 27pncan2d 11495 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧) = ((vol*‘(𝐴(,)𝐵)) + 1))
6058, 59eqtrd 2764 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
6160adantr 480 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
62 iooss2 13302 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6333, 62sylan 580 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6410, 11, 50xrltled 13070 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴𝑧)
65 iooss1 13301 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴𝑧) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6610, 64, 65syl2anc 584 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6766adantr 480 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6863, 67sstrd 3948 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵))
69 ovolss 25402 . . . . . . . . . . . 12 (((𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7068, 16, 69sylancl 586 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7161, 70eqbrtrrd 5119 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
7271ex 412 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
7354, 33xrlenltd 11200 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
7472, 73, 473imtr3d 293 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
7513, 74mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
76 xrre2 13090 . . . . . . 7 (((𝑧 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*) ∧ (𝑧 < 𝐵𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) → 𝐵 ∈ ℝ)
7711, 33, 54, 36, 75, 76syl32anc 1380 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ)
7852, 77jca 511 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
7978ex 412 . . . 4 (𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8079exlimiv 1930 . . 3 (∃𝑧 𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
811, 80sylbi 217 . 2 ((𝐴(,)𝐵) ≠ ∅ → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8281imp 406 1 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3905  c0 4286   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cmin 11365  (,)cioo 13266  vol*covol 25379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-rest 17344  df-topgen 17365  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-top 22797  df-topon 22814  df-bases 22849  df-cmp 23290  df-ovol 25381  df-vol 25382
This theorem is referenced by:  ioorcl  25494
  Copyright terms: Public domain W3C validator