MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioorcl2 Structured version   Visualization version   GIF version

Theorem ioorcl2 24317
Description: An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.)
Assertion
Ref Expression
ioorcl2 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))

Proof of Theorem ioorcl2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 n0 4233 . . 3 ((𝐴(,)𝐵) ≠ ∅ ↔ ∃𝑧 𝑧 ∈ (𝐴(,)𝐵))
2 elioore 12844 . . . . . . . . . 10 (𝑧 ∈ (𝐴(,)𝐵) → 𝑧 ∈ ℝ)
32adantr 484 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ)
4 peano2re 10884 . . . . . . . . . 10 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
54adantl 485 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℝ)
63, 5resubcld 11139 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
76rexrd 10762 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
8 eliooxr 12872 . . . . . . . . 9 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
98adantr 484 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
109simpld 498 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ*)
113rexrd 10762 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℝ*)
12 ltp1 11551 . . . . . . . . 9 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
1312adantl 485 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1))
14 0red 10715 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ∈ ℝ)
15 simpr 488 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ∈ ℝ)
16 ioossre 12875 . . . . . . . . . . . . . . . . 17 (𝐴(,)𝐵) ⊆ ℝ
17 ovolge0 24226 . . . . . . . . . . . . . . . . 17 ((𝐴(,)𝐵) ⊆ ℝ → 0 ≤ (vol*‘(𝐴(,)𝐵)))
1816, 17mp1i 13 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ (vol*‘(𝐴(,)𝐵)))
19 lep1 11552 . . . . . . . . . . . . . . . . 17 ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2019adantl 485 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝐴(,)𝐵)) ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
2114, 15, 5, 18, 20letrd 10868 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1))
223, 5subge02d 11303 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧))
2321, 22mpbid 235 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧)
24 ovolioo 24313 . . . . . . . . . . . . . 14 (((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝑧) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
256, 3, 23, 24syl3anc 1372 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))))
263recnd 10740 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ∈ ℂ)
275recnd 10740 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((vol*‘(𝐴(,)𝐵)) + 1) ∈ ℂ)
2826, 27nncand 11073 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) = ((vol*‘(𝐴(,)𝐵)) + 1))
2925, 28eqtrd 2773 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
3029adantr 484 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) = ((vol*‘(𝐴(,)𝐵)) + 1))
31 iooss1 12849 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
3210, 31sylan 583 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝑧))
339simprd 499 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ*)
34 eliooord 12873 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (𝐴(,)𝐵) → (𝐴 < 𝑧𝑧 < 𝐵))
3534adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 < 𝑧𝑧 < 𝐵))
3635simprd 499 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 < 𝐵)
3711, 33, 36xrltled 12619 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧𝐵)
38 iooss2 12850 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝑧𝐵) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
3933, 37, 38syl2anc 587 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4039adantr 484 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (𝐴(,)𝑧) ⊆ (𝐴(,)𝐵))
4132, 40sstrd 3885 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵))
42 ovolss 24230 . . . . . . . . . . . 12 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4341, 16, 42sylancl 589 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))(,)𝑧)) ≤ (vol*‘(𝐴(,)𝐵)))
4430, 43eqbrtrrd 5051 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ 𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1))) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
4544ex 416 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
4610, 7xrlenltd 10778 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ≤ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ↔ ¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴))
475, 15lenltd 10857 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)) ↔ ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4845, 46, 473imtr3d 296 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴 → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
4913, 48mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴)
5035simpld 498 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 < 𝑧)
51 xrre2 12639 . . . . . . 7 ((((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*𝐴 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧 − ((vol*‘(𝐴(,)𝐵)) + 1)) < 𝐴𝐴 < 𝑧)) → 𝐴 ∈ ℝ)
527, 10, 11, 49, 50, 51syl32anc 1379 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴 ∈ ℝ)
533, 5readdcld 10741 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ)
5453rexrd 10762 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*)
553, 5addge01d 11299 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (0 ≤ ((vol*‘(𝐴(,)𝐵)) + 1) ↔ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
5621, 55mpbid 235 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
57 ovolioo 24313 . . . . . . . . . . . . . 14 ((𝑧 ∈ ℝ ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ ∧ 𝑧 ≤ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
583, 53, 56, 57syl3anc 1372 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧))
5926, 27pncan2d 11070 . . . . . . . . . . . . 13 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) − 𝑧) = ((vol*‘(𝐴(,)𝐵)) + 1))
6058, 59eqtrd 2773 . . . . . . . . . . . 12 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
6160adantr 484 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) = ((vol*‘(𝐴(,)𝐵)) + 1))
62 iooss2 12850 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6333, 62sylan 583 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝑧(,)𝐵))
6410, 11, 50xrltled 12619 . . . . . . . . . . . . . . 15 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐴𝑧)
65 iooss1 12849 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ*𝐴𝑧) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6610, 64, 65syl2anc 587 . . . . . . . . . . . . . 14 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6766adantr 484 . . . . . . . . . . . . 13 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)𝐵) ⊆ (𝐴(,)𝐵))
6863, 67sstrd 3885 . . . . . . . . . . . 12 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵))
69 ovolss 24230 . . . . . . . . . . . 12 (((𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))) ⊆ (𝐴(,)𝐵) ∧ (𝐴(,)𝐵) ⊆ ℝ) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7068, 16, 69sylancl 589 . . . . . . . . . . 11 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → (vol*‘(𝑧(,)(𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) ≤ (vol*‘(𝐴(,)𝐵)))
7161, 70eqbrtrrd 5051 . . . . . . . . . 10 (((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵) → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵)))
7271ex 416 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 → ((vol*‘(𝐴(,)𝐵)) + 1) ≤ (vol*‘(𝐴(,)𝐵))))
7354, 33xrlenltd 10778 . . . . . . . . 9 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → ((𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ≤ 𝐵 ↔ ¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1))))
7472, 73, 473imtr3d 296 . . . . . . . 8 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (¬ 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) → ¬ (vol*‘(𝐴(,)𝐵)) < ((vol*‘(𝐴(,)𝐵)) + 1)))
7513, 74mt4d 117 . . . . . . 7 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))
76 xrre2 12639 . . . . . . 7 (((𝑧 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)) ∈ ℝ*) ∧ (𝑧 < 𝐵𝐵 < (𝑧 + ((vol*‘(𝐴(,)𝐵)) + 1)))) → 𝐵 ∈ ℝ)
7711, 33, 54, 36, 75, 76syl32anc 1379 . . . . . 6 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → 𝐵 ∈ ℝ)
7852, 77jca 515 . . . . 5 ((𝑧 ∈ (𝐴(,)𝐵) ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
7978ex 416 . . . 4 (𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8079exlimiv 1936 . . 3 (∃𝑧 𝑧 ∈ (𝐴(,)𝐵) → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
811, 80sylbi 220 . 2 ((𝐴(,)𝐵) ≠ ∅ → ((vol*‘(𝐴(,)𝐵)) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
8281imp 410 1 (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2113  wne 2934  wss 3841  c0 4209   class class class wbr 5027  cfv 6333  (class class class)co 7164  cr 10607  0cc0 10608  1c1 10609   + caddc 10611  *cxr 10745   < clt 10746  cle 10747  cmin 10941  (,)cioo 12814  vol*covol 24207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-inf2 9170  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685  ax-pre-sup 10686
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-int 4834  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-of 7419  df-om 7594  df-1st 7707  df-2nd 7708  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-1o 8124  df-2o 8125  df-er 8313  df-map 8432  df-pm 8433  df-en 8549  df-dom 8550  df-sdom 8551  df-fin 8552  df-fi 8941  df-sup 8972  df-inf 8973  df-oi 9040  df-dju 9396  df-card 9434  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-div 11369  df-nn 11710  df-2 11772  df-3 11773  df-n0 11970  df-z 12056  df-uz 12318  df-q 12424  df-rp 12466  df-xneg 12583  df-xadd 12584  df-xmul 12585  df-ioo 12818  df-ico 12820  df-icc 12821  df-fz 12975  df-fzo 13118  df-fl 13246  df-seq 13454  df-exp 13515  df-hash 13776  df-cj 14541  df-re 14542  df-im 14543  df-sqrt 14677  df-abs 14678  df-clim 14928  df-rlim 14929  df-sum 15129  df-rest 16792  df-topgen 16813  df-psmet 20202  df-xmet 20203  df-met 20204  df-bl 20205  df-mopn 20206  df-top 21638  df-topon 21655  df-bases 21690  df-cmp 22131  df-ovol 24209  df-vol 24210
This theorem is referenced by:  ioorcl  24322
  Copyright terms: Public domain W3C validator