HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atom1d Structured version   Visualization version   GIF version

Theorem atom1d 32381
Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atom1d (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Distinct variable group:   𝑥,𝐴

Proof of Theorem atom1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elat2 32368 . . . 4 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))))
2 chne0 31522 . . . . . 6 (𝐴C → (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0))
3 nfv 1911 . . . . . . 7 𝑥 𝐴C
4 nfv 1911 . . . . . . . 8 𝑥𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0))
5 nfre1 3282 . . . . . . . 8 𝑥𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))
64, 5nfim 1893 . . . . . . 7 𝑥(∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
7 chel 31258 . . . . . . . . . . 11 ((𝐴C𝑥𝐴) → 𝑥 ∈ ℋ)
87adantrr 717 . . . . . . . . . 10 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → 𝑥 ∈ ℋ)
98adantrr 717 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ∈ ℋ)
10 simprlr 780 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ≠ 0)
11 h1dn0 31580 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
127, 11sylan 580 . . . . . . . . . . . . 13 (((𝐴C𝑥𝐴) ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1312anasss 466 . . . . . . . . . . . 12 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1413adantrr 717 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) ≠ 0)
15 ch1dle 32380 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (⊥‘(⊥‘{𝑥})) ⊆ 𝐴)
16 snssi 4812 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → {𝑥} ⊆ ℋ)
17 occl 31332 . . . . . . . . . . . . . . . . . 18 ({𝑥} ⊆ ℋ → (⊥‘{𝑥}) ∈ C )
187, 16, 173syl 18 . . . . . . . . . . . . . . . . 17 ((𝐴C𝑥𝐴) → (⊥‘{𝑥}) ∈ C )
19 choccl 31334 . . . . . . . . . . . . . . . . 17 ((⊥‘{𝑥}) ∈ C → (⊥‘(⊥‘{𝑥})) ∈ C )
20 sseq1 4020 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦𝐴 ↔ (⊥‘(⊥‘{𝑥})) ⊆ 𝐴))
21 eqeq1 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 𝐴 ↔ (⊥‘(⊥‘{𝑥})) = 𝐴))
22 eqeq1 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 0 ↔ (⊥‘(⊥‘{𝑥})) = 0))
2321, 22orbi12d 918 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦 = 𝐴𝑦 = 0) ↔ ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2420, 23imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) ↔ ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2524rspcv 3617 . . . . . . . . . . . . . . . . 17 ((⊥‘(⊥‘{𝑥})) ∈ C → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2618, 19, 253syl 18 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2715, 26mpid 44 . . . . . . . . . . . . . . 15 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2827impr 454 . . . . . . . . . . . . . 14 ((𝐴C ∧ (𝑥𝐴 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
2928adantrlr 723 . . . . . . . . . . . . 13 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
3029ord 864 . . . . . . . . . . . 12 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → (⊥‘(⊥‘{𝑥})) = 0))
31 nne 2941 . . . . . . . . . . . 12 (¬ (⊥‘(⊥‘{𝑥})) ≠ 0 ↔ (⊥‘(⊥‘{𝑥})) = 0)
3230, 31imbitrrdi 252 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → ¬ (⊥‘(⊥‘{𝑥})) ≠ 0))
3314, 32mt4d 117 . . . . . . . . . 10 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) = 𝐴)
3433eqcomd 2740 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝐴 = (⊥‘(⊥‘{𝑥})))
35 rspe 3246 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
369, 10, 34, 35syl12anc 837 . . . . . . . 8 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
3736exp44 437 . . . . . . 7 (𝐴C → (𝑥𝐴 → (𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))))
383, 6, 37rexlimd 3263 . . . . . 6 (𝐴C → (∃𝑥𝐴 𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
392, 38sylbid 240 . . . . 5 (𝐴C → (𝐴 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
4039imp32 418 . . . 4 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
411, 40sylbi 217 . . 3 (𝐴 ∈ HAtoms → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
42 h1da 32377 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ∈ HAtoms)
43 eleq1 2826 . . . . . . 7 (𝐴 = (⊥‘(⊥‘{𝑥})) → (𝐴 ∈ HAtoms ↔ (⊥‘(⊥‘{𝑥})) ∈ HAtoms))
4442, 43imbitrrid 246 . . . . . 6 (𝐴 = (⊥‘(⊥‘{𝑥})) → ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → 𝐴 ∈ HAtoms))
4544expdcom 414 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ≠ 0 → (𝐴 = (⊥‘(⊥‘{𝑥})) → 𝐴 ∈ HAtoms)))
4645impd 410 . . . 4 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms))
4746rexlimiv 3145 . . 3 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms)
4841, 47impbii 209 . 2 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
49 spansn 31587 . . . . 5 (𝑥 ∈ ℋ → (span‘{𝑥}) = (⊥‘(⊥‘{𝑥})))
5049eqeq2d 2745 . . . 4 (𝑥 ∈ ℋ → (𝐴 = (span‘{𝑥}) ↔ 𝐴 = (⊥‘(⊥‘{𝑥}))))
5150anbi2d 630 . . 3 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))
5251rexbiia 3089 . 2 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
5348, 52bitr4i 278 1 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  wss 3962  {csn 4630  cfv 6562  chba 30947  0c0v 30952   C cch 30957  cort 30958  spancspn 30960  0c0h 30963  HAtomscat 30993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232  ax-hilex 31027  ax-hfvadd 31028  ax-hvcom 31029  ax-hvass 31030  ax-hv0cl 31031  ax-hvaddid 31032  ax-hfvmul 31033  ax-hvmulid 31034  ax-hvmulass 31035  ax-hvdistr1 31036  ax-hvdistr2 31037  ax-hvmul0 31038  ax-hfi 31107  ax-his1 31110  ax-his2 31111  ax-his3 31112  ax-his4 31113  ax-hcompl 31230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-cn 23250  df-cnp 23251  df-lm 23252  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cfil 25302  df-cau 25303  df-cmet 25304  df-grpo 30521  df-gid 30522  df-ginv 30523  df-gdiv 30524  df-ablo 30573  df-vc 30587  df-nv 30620  df-va 30623  df-ba 30624  df-sm 30625  df-0v 30626  df-vs 30627  df-nmcv 30628  df-ims 30629  df-dip 30729  df-ssp 30750  df-ph 30841  df-cbn 30891  df-hnorm 30996  df-hba 30997  df-hvsub 30999  df-hlim 31000  df-hcau 31001  df-sh 31235  df-ch 31249  df-oc 31280  df-ch0 31281  df-span 31337  df-cv 32307  df-at 32366
This theorem is referenced by:  superpos  32382  chcv1  32383  chjatom  32385
  Copyright terms: Public domain W3C validator