Step | Hyp | Ref
| Expression |
1 | | elat2 30603 |
. . . 4
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈
Cℋ ∧ (𝐴 ≠ 0ℋ ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ))))) |
2 | | chne0 29757 |
. . . . . 6
⊢ (𝐴 ∈
Cℋ → (𝐴 ≠ 0ℋ ↔
∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ)) |
3 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑥 𝐴 ∈
Cℋ |
4 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑥∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) |
5 | | nfre1 3234 |
. . . . . . . 8
⊢
Ⅎ𝑥∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥}))) |
6 | 4, 5 | nfim 1900 |
. . . . . . 7
⊢
Ⅎ𝑥(∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥})))) |
7 | | chel 29493 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℋ) |
8 | 7 | adantrr 713 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
Cℋ ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ)) → 𝑥 ∈
ℋ) |
9 | 8 | adantrr 713 |
. . . . . . . . 9
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) → 𝑥 ∈
ℋ) |
10 | | simprlr 776 |
. . . . . . . . 9
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) → 𝑥 ≠
0ℎ) |
11 | | h1dn0 29815 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ)
→ (⊥‘(⊥‘{𝑥})) ≠
0ℋ) |
12 | 7, 11 | sylan 579 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) ∧ 𝑥 ≠ 0ℎ) →
(⊥‘(⊥‘{𝑥})) ≠
0ℋ) |
13 | 12 | anasss 466 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
Cℋ ∧ (𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ)) →
(⊥‘(⊥‘{𝑥})) ≠
0ℋ) |
14 | 13 | adantrr 713 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
(⊥‘(⊥‘{𝑥})) ≠
0ℋ) |
15 | | ch1dle 30615 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) →
(⊥‘(⊥‘{𝑥})) ⊆ 𝐴) |
16 | | snssi 4738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℋ → {𝑥} ⊆
ℋ) |
17 | | occl 29567 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑥} ⊆ ℋ →
(⊥‘{𝑥}) ∈
Cℋ ) |
18 | 7, 16, 17 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) → (⊥‘{𝑥}) ∈ Cℋ
) |
19 | | choccl 29569 |
. . . . . . . . . . . . . . . . 17
⊢
((⊥‘{𝑥})
∈ Cℋ →
(⊥‘(⊥‘{𝑥})) ∈ Cℋ
) |
20 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 =
(⊥‘(⊥‘{𝑥})) → (𝑦 ⊆ 𝐴 ↔ (⊥‘(⊥‘{𝑥})) ⊆ 𝐴)) |
21 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 =
(⊥‘(⊥‘{𝑥})) → (𝑦 = 𝐴 ↔ (⊥‘(⊥‘{𝑥})) = 𝐴)) |
22 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 =
(⊥‘(⊥‘{𝑥})) → (𝑦 = 0ℋ ↔
(⊥‘(⊥‘{𝑥})) = 0ℋ)) |
23 | 21, 22 | orbi12d 915 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 =
(⊥‘(⊥‘{𝑥})) → ((𝑦 = 𝐴 ∨ 𝑦 = 0ℋ) ↔
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ))) |
24 | 20, 23 | imbi12d 344 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 =
(⊥‘(⊥‘{𝑥})) → ((𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) ↔
((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ)))) |
25 | 24 | rspcv 3547 |
. . . . . . . . . . . . . . . . 17
⊢
((⊥‘(⊥‘{𝑥})) ∈ Cℋ
→ (∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) →
((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ)))) |
26 | 18, 19, 25 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) →
((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ)))) |
27 | 15, 26 | mpid 44 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈
Cℋ ∧ 𝑥 ∈ 𝐴) → (∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ))) |
28 | 27 | impr 454 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈
Cℋ ∧ (𝑥 ∈ 𝐴 ∧ ∀𝑦 ∈ Cℋ
(𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ)) |
29 | 28 | adantrlr 719 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) =
0ℋ)) |
30 | 29 | ord 860 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) → (¬
(⊥‘(⊥‘{𝑥})) = 𝐴 → (⊥‘(⊥‘{𝑥})) =
0ℋ)) |
31 | | nne 2946 |
. . . . . . . . . . . 12
⊢ (¬
(⊥‘(⊥‘{𝑥})) ≠ 0ℋ ↔
(⊥‘(⊥‘{𝑥})) = 0ℋ) |
32 | 30, 31 | syl6ibr 251 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) → (¬
(⊥‘(⊥‘{𝑥})) = 𝐴 → ¬
(⊥‘(⊥‘{𝑥})) ≠
0ℋ)) |
33 | 14, 32 | mt4d 117 |
. . . . . . . . . 10
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
(⊥‘(⊥‘{𝑥})) = 𝐴) |
34 | 33 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) → 𝐴 =
(⊥‘(⊥‘{𝑥}))) |
35 | | rspe 3232 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℋ ∧ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥})))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 =
(⊥‘(⊥‘{𝑥})))) |
36 | 9, 10, 34, 35 | syl12anc 833 |
. . . . . . . 8
⊢ ((𝐴 ∈
Cℋ ∧ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≠ 0ℎ) ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
∃𝑥 ∈ ℋ
(𝑥 ≠
0ℎ ∧ 𝐴 = (⊥‘(⊥‘{𝑥})))) |
37 | 36 | exp44 437 |
. . . . . . 7
⊢ (𝐴 ∈
Cℋ → (𝑥 ∈ 𝐴 → (𝑥 ≠ 0ℎ →
(∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥}))))))) |
38 | 3, 6, 37 | rexlimd 3245 |
. . . . . 6
⊢ (𝐴 ∈
Cℋ → (∃𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ →
(∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥})))))) |
39 | 2, 38 | sylbid 239 |
. . . . 5
⊢ (𝐴 ∈
Cℋ → (𝐴 ≠ 0ℋ →
(∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥})))))) |
40 | 39 | imp32 418 |
. . . 4
⊢ ((𝐴 ∈
Cℋ ∧ (𝐴 ≠ 0ℋ ∧
∀𝑦 ∈
Cℋ (𝑦 ⊆ 𝐴 → (𝑦 = 𝐴 ∨ 𝑦 = 0ℋ)))) →
∃𝑥 ∈ ℋ
(𝑥 ≠
0ℎ ∧ 𝐴 = (⊥‘(⊥‘{𝑥})))) |
41 | 1, 40 | sylbi 216 |
. . 3
⊢ (𝐴 ∈ HAtoms →
∃𝑥 ∈ ℋ
(𝑥 ≠
0ℎ ∧ 𝐴 = (⊥‘(⊥‘{𝑥})))) |
42 | | h1da 30612 |
. . . . . . 7
⊢ ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ)
→ (⊥‘(⊥‘{𝑥})) ∈ HAtoms) |
43 | | eleq1 2826 |
. . . . . . 7
⊢ (𝐴 =
(⊥‘(⊥‘{𝑥})) → (𝐴 ∈ HAtoms ↔
(⊥‘(⊥‘{𝑥})) ∈ HAtoms)) |
44 | 42, 43 | syl5ibr 245 |
. . . . . 6
⊢ (𝐴 =
(⊥‘(⊥‘{𝑥})) → ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0ℎ) → 𝐴 ∈
HAtoms)) |
45 | 44 | expdcom 414 |
. . . . 5
⊢ (𝑥 ∈ ℋ → (𝑥 ≠ 0ℎ
→ (𝐴 =
(⊥‘(⊥‘{𝑥})) → 𝐴 ∈ HAtoms))) |
46 | 45 | impd 410 |
. . . 4
⊢ (𝑥 ∈ ℋ → ((𝑥 ≠ 0ℎ ∧
𝐴 =
(⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms)) |
47 | 46 | rexlimiv 3208 |
. . 3
⊢
(∃𝑥 ∈
ℋ (𝑥 ≠
0ℎ ∧ 𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms) |
48 | 41, 47 | impbii 208 |
. 2
⊢ (𝐴 ∈ HAtoms ↔
∃𝑥 ∈ ℋ
(𝑥 ≠
0ℎ ∧ 𝐴 = (⊥‘(⊥‘{𝑥})))) |
49 | | spansn 29822 |
. . . . 5
⊢ (𝑥 ∈ ℋ →
(span‘{𝑥}) =
(⊥‘(⊥‘{𝑥}))) |
50 | 49 | eqeq2d 2749 |
. . . 4
⊢ (𝑥 ∈ ℋ → (𝐴 = (span‘{𝑥}) ↔ 𝐴 = (⊥‘(⊥‘{𝑥})))) |
51 | 50 | anbi2d 628 |
. . 3
⊢ (𝑥 ∈ ℋ → ((𝑥 ≠ 0ℎ ∧
𝐴 = (span‘{𝑥})) ↔ (𝑥 ≠ 0ℎ ∧ 𝐴 =
(⊥‘(⊥‘{𝑥}))))) |
52 | 51 | rexbiia 3176 |
. 2
⊢
(∃𝑥 ∈
ℋ (𝑥 ≠
0ℎ ∧ 𝐴 = (span‘{𝑥})) ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 =
(⊥‘(⊥‘{𝑥})))) |
53 | 48, 52 | bitr4i 277 |
1
⊢ (𝐴 ∈ HAtoms ↔
∃𝑥 ∈ ℋ
(𝑥 ≠
0ℎ ∧ 𝐴 = (span‘{𝑥}))) |