HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atom1d Structured version   Visualization version   GIF version

Theorem atom1d 32323
Description: The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atom1d (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Distinct variable group:   𝑥,𝐴

Proof of Theorem atom1d
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elat2 32310 . . . 4 (𝐴 ∈ HAtoms ↔ (𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))))
2 chne0 31464 . . . . . 6 (𝐴C → (𝐴 ≠ 0 ↔ ∃𝑥𝐴 𝑥 ≠ 0))
3 nfv 1915 . . . . . . 7 𝑥 𝐴C
4 nfv 1915 . . . . . . . 8 𝑥𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0))
5 nfre1 3255 . . . . . . . 8 𝑥𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))
64, 5nfim 1897 . . . . . . 7 𝑥(∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
7 chel 31200 . . . . . . . . . . 11 ((𝐴C𝑥𝐴) → 𝑥 ∈ ℋ)
87adantrr 717 . . . . . . . . . 10 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → 𝑥 ∈ ℋ)
98adantrr 717 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ∈ ℋ)
10 simprlr 779 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝑥 ≠ 0)
11 h1dn0 31522 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
127, 11sylan 580 . . . . . . . . . . . . 13 (((𝐴C𝑥𝐴) ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1312anasss 466 . . . . . . . . . . . 12 ((𝐴C ∧ (𝑥𝐴𝑥 ≠ 0)) → (⊥‘(⊥‘{𝑥})) ≠ 0)
1413adantrr 717 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) ≠ 0)
15 ch1dle 32322 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (⊥‘(⊥‘{𝑥})) ⊆ 𝐴)
16 snssi 4758 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℋ → {𝑥} ⊆ ℋ)
17 occl 31274 . . . . . . . . . . . . . . . . . 18 ({𝑥} ⊆ ℋ → (⊥‘{𝑥}) ∈ C )
187, 16, 173syl 18 . . . . . . . . . . . . . . . . 17 ((𝐴C𝑥𝐴) → (⊥‘{𝑥}) ∈ C )
19 choccl 31276 . . . . . . . . . . . . . . . . 17 ((⊥‘{𝑥}) ∈ C → (⊥‘(⊥‘{𝑥})) ∈ C )
20 sseq1 3958 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦𝐴 ↔ (⊥‘(⊥‘{𝑥})) ⊆ 𝐴))
21 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 𝐴 ↔ (⊥‘(⊥‘{𝑥})) = 𝐴))
22 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (⊥‘(⊥‘{𝑥})) → (𝑦 = 0 ↔ (⊥‘(⊥‘{𝑥})) = 0))
2321, 22orbi12d 918 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦 = 𝐴𝑦 = 0) ↔ ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2420, 23imbi12d 344 . . . . . . . . . . . . . . . . . 18 (𝑦 = (⊥‘(⊥‘{𝑥})) → ((𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) ↔ ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2524rspcv 3571 . . . . . . . . . . . . . . . . 17 ((⊥‘(⊥‘{𝑥})) ∈ C → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2618, 19, 253syl 18 . . . . . . . . . . . . . . . 16 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) ⊆ 𝐴 → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))))
2715, 26mpid 44 . . . . . . . . . . . . . . 15 ((𝐴C𝑥𝐴) → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0)))
2827impr 454 . . . . . . . . . . . . . 14 ((𝐴C ∧ (𝑥𝐴 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
2928adantrlr 723 . . . . . . . . . . . . 13 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ((⊥‘(⊥‘{𝑥})) = 𝐴 ∨ (⊥‘(⊥‘{𝑥})) = 0))
3029ord 864 . . . . . . . . . . . 12 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → (⊥‘(⊥‘{𝑥})) = 0))
31 nne 2930 . . . . . . . . . . . 12 (¬ (⊥‘(⊥‘{𝑥})) ≠ 0 ↔ (⊥‘(⊥‘{𝑥})) = 0)
3230, 31imbitrrdi 252 . . . . . . . . . . 11 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (¬ (⊥‘(⊥‘{𝑥})) = 𝐴 → ¬ (⊥‘(⊥‘{𝑥})) ≠ 0))
3314, 32mt4d 117 . . . . . . . . . 10 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → (⊥‘(⊥‘{𝑥})) = 𝐴)
3433eqcomd 2736 . . . . . . . . 9 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → 𝐴 = (⊥‘(⊥‘{𝑥})))
35 rspe 3220 . . . . . . . . 9 ((𝑥 ∈ ℋ ∧ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
369, 10, 34, 35syl12anc 836 . . . . . . . 8 ((𝐴C ∧ ((𝑥𝐴𝑥 ≠ 0) ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
3736exp44 437 . . . . . . 7 (𝐴C → (𝑥𝐴 → (𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))))
383, 6, 37rexlimd 3237 . . . . . 6 (𝐴C → (∃𝑥𝐴 𝑥 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
392, 38sylbid 240 . . . . 5 (𝐴C → (𝐴 ≠ 0 → (∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))))
4039imp32 418 . . . 4 ((𝐴C ∧ (𝐴 ≠ 0 ∧ ∀𝑦C (𝑦𝐴 → (𝑦 = 𝐴𝑦 = 0)))) → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
411, 40sylbi 217 . . 3 (𝐴 ∈ HAtoms → ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
42 h1da 32319 . . . . . . 7 ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → (⊥‘(⊥‘{𝑥})) ∈ HAtoms)
43 eleq1 2817 . . . . . . 7 (𝐴 = (⊥‘(⊥‘{𝑥})) → (𝐴 ∈ HAtoms ↔ (⊥‘(⊥‘{𝑥})) ∈ HAtoms))
4442, 43imbitrrid 246 . . . . . 6 (𝐴 = (⊥‘(⊥‘{𝑥})) → ((𝑥 ∈ ℋ ∧ 𝑥 ≠ 0) → 𝐴 ∈ HAtoms))
4544expdcom 414 . . . . 5 (𝑥 ∈ ℋ → (𝑥 ≠ 0 → (𝐴 = (⊥‘(⊥‘{𝑥})) → 𝐴 ∈ HAtoms)))
4645impd 410 . . . 4 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms))
4746rexlimiv 3124 . . 3 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))) → 𝐴 ∈ HAtoms)
4841, 47impbii 209 . 2 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
49 spansn 31529 . . . . 5 (𝑥 ∈ ℋ → (span‘{𝑥}) = (⊥‘(⊥‘{𝑥})))
5049eqeq2d 2741 . . . 4 (𝑥 ∈ ℋ → (𝐴 = (span‘{𝑥}) ↔ 𝐴 = (⊥‘(⊥‘{𝑥}))))
5150anbi2d 630 . . 3 (𝑥 ∈ ℋ → ((𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥})))))
5251rexbiia 3075 . 2 (∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})) ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (⊥‘(⊥‘{𝑥}))))
5348, 52bitr4i 278 1 (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0𝐴 = (span‘{𝑥})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  wss 3900  {csn 4574  cfv 6477  chba 30889  0c0v 30894   C cch 30899  cort 30900  spancspn 30902  0c0h 30905  HAtomscat 30935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078  ax-hilex 30969  ax-hfvadd 30970  ax-hvcom 30971  ax-hvass 30972  ax-hv0cl 30973  ax-hvaddid 30974  ax-hfvmul 30975  ax-hvmulid 30976  ax-hvmulass 30977  ax-hvdistr1 30978  ax-hvdistr2 30979  ax-hvmul0 30980  ax-hfi 31049  ax-his1 31052  ax-his2 31053  ax-his3 31054  ax-his4 31055  ax-hcompl 31172
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-rlim 15388  df-sum 15586  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-cn 23135  df-cnp 23136  df-lm 23137  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cfil 25175  df-cau 25176  df-cmet 25177  df-grpo 30463  df-gid 30464  df-ginv 30465  df-gdiv 30466  df-ablo 30515  df-vc 30529  df-nv 30562  df-va 30565  df-ba 30566  df-sm 30567  df-0v 30568  df-vs 30569  df-nmcv 30570  df-ims 30571  df-dip 30671  df-ssp 30692  df-ph 30783  df-cbn 30833  df-hnorm 30938  df-hba 30939  df-hvsub 30941  df-hlim 30942  df-hcau 30943  df-sh 31177  df-ch 31191  df-oc 31222  df-ch0 31223  df-span 31279  df-cv 32249  df-at 32308
This theorem is referenced by:  superpos  32324  chcv1  32325  chjatom  32327
  Copyright terms: Public domain W3C validator