MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Visualization version   GIF version

Theorem fin1a2s 9571
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem fin1a2s
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4389 . . . 4 (𝑐 ∈ 𝒫 𝒫 𝐴𝑐 ⊆ 𝒫 𝐴)
2 fin12 9570 . . . . . . . . . . 11 (𝑥 ∈ Fin → 𝑥 ∈ FinII)
3 fin23 9546 . . . . . . . . . . 11 (𝑥 ∈ FinII𝑥 ∈ FinIII)
42, 3syl 17 . . . . . . . . . 10 (𝑥 ∈ Fin → 𝑥 ∈ FinIII)
5 fin23 9546 . . . . . . . . . 10 ((𝐴𝑥) ∈ FinII → (𝐴𝑥) ∈ FinIII)
64, 5orim12i 895 . . . . . . . . 9 ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → (𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
76ralimi 3134 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
8 fin1a2lem8 9564 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
97, 8sylan2 586 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinIII)
109adantr 474 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝐴 ∈ FinIII)
11 simplrl 767 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ 𝒫 𝐴)
12 simprrr 772 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → [] Or 𝑐)
1312adantr 474 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → [] Or 𝑐)
14 simprl 761 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝑐𝑐)
15 simplrl 767 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → 𝑐 ⊆ 𝒫 𝐴)
16 ssralv 3885 . . . . . . . . . . . . . 14 (𝑐 ⊆ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
18 idd 24 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (𝑥 ∈ Fin → 𝑥 ∈ Fin))
19 fin1a2lem13 9569 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2019ex 403 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
21203expa 1108 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2221adantlrl 710 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐)) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2322adantll 704 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2423imp 397 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2524ancom2s 640 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (𝑥𝑐 ∧ ¬ 𝑥 ∈ Fin)) → ¬ (𝐴𝑥) ∈ FinII)
2625expr 450 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (¬ 𝑥 ∈ Fin → ¬ (𝐴𝑥) ∈ FinII))
2726con4d 115 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝐴𝑥) ∈ FinII𝑥 ∈ Fin))
2818, 27jaod 848 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → 𝑥 ∈ Fin))
2928ralimdva 3144 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3017, 29syld 47 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3130impr 448 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ∀𝑥𝑐 𝑥 ∈ Fin)
32 dfss3 3810 . . . . . . . . . . 11 (𝑐 ⊆ Fin ↔ ∀𝑥𝑐 𝑥 ∈ Fin)
3331, 32sylibr 226 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ Fin)
34 simprrl 771 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐 ≠ ∅)
3534adantr 474 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ≠ ∅)
36 fin1a2lem12 9568 . . . . . . . . . 10 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅)) → ¬ 𝐴 ∈ FinIII)
3711, 13, 14, 33, 35, 36syl32anc 1446 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝐴 ∈ FinIII)
3837expr 450 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ¬ 𝐴 ∈ FinIII))
3938impancom 445 . . . . . . 7 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4039an32s 642 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4110, 40mt4d 154 . . . . 5 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐𝑐)
4241exp32 413 . . . 4 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ⊆ 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
431, 42syl5 34 . . 3 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ∈ 𝒫 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4443ralrimiv 3147 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐))
45 isfin2 9451 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4645adantr 474 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4744, 46mpbird 249 1 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836  w3a 1071  wcel 2107  wne 2969  wral 3090  cdif 3789  wss 3792  c0 4141  𝒫 cpw 4379   cuni 4671   Or wor 5273   [] crpss 7213  Fincfn 8241  FinIIcfin2 9436  FinIIIcfin3 9438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-rpss 7214  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-seqom 7826  df-1o 7843  df-2o 7844  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-wdom 8753  df-card 9098  df-fin2 9443  df-fin4 9444  df-fin3 9445
This theorem is referenced by:  fin1a2  9572
  Copyright terms: Public domain W3C validator