MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Visualization version   GIF version

Theorem fin1a2s 9825
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem fin1a2s
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4506 . . . 4 (𝑐 ∈ 𝒫 𝒫 𝐴𝑐 ⊆ 𝒫 𝐴)
2 fin12 9824 . . . . . . . . . . 11 (𝑥 ∈ Fin → 𝑥 ∈ FinII)
3 fin23 9800 . . . . . . . . . . 11 (𝑥 ∈ FinII𝑥 ∈ FinIII)
42, 3syl 17 . . . . . . . . . 10 (𝑥 ∈ Fin → 𝑥 ∈ FinIII)
5 fin23 9800 . . . . . . . . . 10 ((𝐴𝑥) ∈ FinII → (𝐴𝑥) ∈ FinIII)
64, 5orim12i 906 . . . . . . . . 9 ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → (𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
76ralimi 3128 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
8 fin1a2lem8 9818 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
97, 8sylan2 595 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinIII)
109adantr 484 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝐴 ∈ FinIII)
11 simplrl 776 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ 𝒫 𝐴)
12 simprrr 781 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → [] Or 𝑐)
1312adantr 484 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → [] Or 𝑐)
14 simprl 770 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝑐𝑐)
15 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → 𝑐 ⊆ 𝒫 𝐴)
16 ssralv 3981 . . . . . . . . . . . . . 14 (𝑐 ⊆ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
18 idd 24 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (𝑥 ∈ Fin → 𝑥 ∈ Fin))
19 fin1a2lem13 9823 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2019ex 416 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
21203expa 1115 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2221adantlrl 719 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐)) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2322adantll 713 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2423imp 410 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2524ancom2s 649 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (𝑥𝑐 ∧ ¬ 𝑥 ∈ Fin)) → ¬ (𝐴𝑥) ∈ FinII)
2625expr 460 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (¬ 𝑥 ∈ Fin → ¬ (𝐴𝑥) ∈ FinII))
2726con4d 115 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝐴𝑥) ∈ FinII𝑥 ∈ Fin))
2818, 27jaod 856 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → 𝑥 ∈ Fin))
2928ralimdva 3144 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3017, 29syld 47 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3130impr 458 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ∀𝑥𝑐 𝑥 ∈ Fin)
32 dfss3 3903 . . . . . . . . . . 11 (𝑐 ⊆ Fin ↔ ∀𝑥𝑐 𝑥 ∈ Fin)
3331, 32sylibr 237 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ Fin)
34 simprrl 780 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐 ≠ ∅)
3534adantr 484 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ≠ ∅)
36 fin1a2lem12 9822 . . . . . . . . . 10 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅)) → ¬ 𝐴 ∈ FinIII)
3711, 13, 14, 33, 35, 36syl32anc 1375 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝐴 ∈ FinIII)
3837expr 460 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ¬ 𝐴 ∈ FinIII))
3938impancom 455 . . . . . . 7 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4039an32s 651 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4110, 40mt4d 117 . . . . 5 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐𝑐)
4241exp32 424 . . . 4 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ⊆ 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
431, 42syl5 34 . . 3 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ∈ 𝒫 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4443ralrimiv 3148 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐))
45 isfin2 9705 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4645adantr 484 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4744, 46mpbird 260 1 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084  wcel 2111  wne 2987  wral 3106  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497   cuni 4800   Or wor 5437   [] crpss 7428  Fincfn 8492  FinIIcfin2 9690  FinIIIcfin3 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-wdom 9013  df-card 9352  df-fin2 9697  df-fin4 9698  df-fin3 9699
This theorem is referenced by:  fin1a2  9826
  Copyright terms: Public domain W3C validator