MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Visualization version   GIF version

Theorem fin1a2s 10451
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem fin1a2s
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4611 . . . 4 (𝑐 ∈ 𝒫 𝒫 𝐴𝑐 ⊆ 𝒫 𝐴)
2 fin12 10450 . . . . . . . . . . 11 (𝑥 ∈ Fin → 𝑥 ∈ FinII)
3 fin23 10426 . . . . . . . . . . 11 (𝑥 ∈ FinII𝑥 ∈ FinIII)
42, 3syl 17 . . . . . . . . . 10 (𝑥 ∈ Fin → 𝑥 ∈ FinIII)
5 fin23 10426 . . . . . . . . . 10 ((𝐴𝑥) ∈ FinII → (𝐴𝑥) ∈ FinIII)
64, 5orim12i 908 . . . . . . . . 9 ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → (𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
76ralimi 3080 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
8 fin1a2lem8 10444 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
97, 8sylan2 593 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinIII)
109adantr 480 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝐴 ∈ FinIII)
11 simplrl 777 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ 𝒫 𝐴)
12 simprrr 782 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → [] Or 𝑐)
1312adantr 480 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → [] Or 𝑐)
14 simprl 771 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝑐𝑐)
15 simplrl 777 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → 𝑐 ⊆ 𝒫 𝐴)
16 ssralv 4063 . . . . . . . . . . . . . 14 (𝑐 ⊆ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
18 idd 24 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (𝑥 ∈ Fin → 𝑥 ∈ Fin))
19 fin1a2lem13 10449 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2019ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
21203expa 1117 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2221adantlrl 720 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐)) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2322adantll 714 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2423imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2524ancom2s 650 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (𝑥𝑐 ∧ ¬ 𝑥 ∈ Fin)) → ¬ (𝐴𝑥) ∈ FinII)
2625expr 456 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (¬ 𝑥 ∈ Fin → ¬ (𝐴𝑥) ∈ FinII))
2726con4d 115 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝐴𝑥) ∈ FinII𝑥 ∈ Fin))
2818, 27jaod 859 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → 𝑥 ∈ Fin))
2928ralimdva 3164 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3017, 29syld 47 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3130impr 454 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ∀𝑥𝑐 𝑥 ∈ Fin)
32 dfss3 3983 . . . . . . . . . . 11 (𝑐 ⊆ Fin ↔ ∀𝑥𝑐 𝑥 ∈ Fin)
3331, 32sylibr 234 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ Fin)
34 simprrl 781 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐 ≠ ∅)
3534adantr 480 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ≠ ∅)
36 fin1a2lem12 10448 . . . . . . . . . 10 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅)) → ¬ 𝐴 ∈ FinIII)
3711, 13, 14, 33, 35, 36syl32anc 1377 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝐴 ∈ FinIII)
3837expr 456 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ¬ 𝐴 ∈ FinIII))
3938impancom 451 . . . . . . 7 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4039an32s 652 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4110, 40mt4d 117 . . . . 5 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐𝑐)
4241exp32 420 . . . 4 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ⊆ 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
431, 42syl5 34 . . 3 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ∈ 𝒫 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4443ralrimiv 3142 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐))
45 isfin2 10331 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4645adantr 480 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4744, 46mpbird 257 1 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2105  wne 2937  wral 3058  cdif 3959  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911   Or wor 5595   [] crpss 7740  Fincfn 8983  FinIIcfin2 10316  FinIIIcfin3 10318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-rpss 7741  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-seqom 8486  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-wdom 9602  df-card 9976  df-fin2 10323  df-fin4 10324  df-fin3 10325
This theorem is referenced by:  fin1a2  10452
  Copyright terms: Public domain W3C validator