MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2s Structured version   Visualization version   GIF version

Theorem fin1a2s 10483
Description: An II-infinite set can have an I-infinite part broken off and remain II-infinite. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2s ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉

Proof of Theorem fin1a2s
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4629 . . . 4 (𝑐 ∈ 𝒫 𝒫 𝐴𝑐 ⊆ 𝒫 𝐴)
2 fin12 10482 . . . . . . . . . . 11 (𝑥 ∈ Fin → 𝑥 ∈ FinII)
3 fin23 10458 . . . . . . . . . . 11 (𝑥 ∈ FinII𝑥 ∈ FinIII)
42, 3syl 17 . . . . . . . . . 10 (𝑥 ∈ Fin → 𝑥 ∈ FinIII)
5 fin23 10458 . . . . . . . . . 10 ((𝐴𝑥) ∈ FinII → (𝐴𝑥) ∈ FinIII)
64, 5orim12i 907 . . . . . . . . 9 ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → (𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
76ralimi 3089 . . . . . . . 8 (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII))
8 fin1a2lem8 10476 . . . . . . . 8 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ FinIII ∨ (𝐴𝑥) ∈ FinIII)) → 𝐴 ∈ FinIII)
97, 8sylan2 592 . . . . . . 7 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinIII)
109adantr 480 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝐴 ∈ FinIII)
11 simplrl 776 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ 𝒫 𝐴)
12 simprrr 781 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → [] Or 𝑐)
1312adantr 480 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → [] Or 𝑐)
14 simprl 770 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝑐𝑐)
15 simplrl 776 . . . . . . . . . . . . . 14 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → 𝑐 ⊆ 𝒫 𝐴)
16 ssralv 4077 . . . . . . . . . . . . . 14 (𝑐 ⊆ 𝒫 𝐴 → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)))
18 idd 24 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (𝑥 ∈ Fin → 𝑥 ∈ Fin))
19 fin1a2lem13 10481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2019ex 412 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
21203expa 1118 . . . . . . . . . . . . . . . . . . . . 21 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2221adantlrl 719 . . . . . . . . . . . . . . . . . . . 20 (((𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐)) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2322adantll 713 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → ((¬ 𝑥 ∈ Fin ∧ 𝑥𝑐) → ¬ (𝐴𝑥) ∈ FinII))
2423imp 406 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (¬ 𝑥 ∈ Fin ∧ 𝑥𝑐)) → ¬ (𝐴𝑥) ∈ FinII)
2524ancom2s 649 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ (𝑥𝑐 ∧ ¬ 𝑥 ∈ Fin)) → ¬ (𝐴𝑥) ∈ FinII)
2625expr 456 . . . . . . . . . . . . . . . 16 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → (¬ 𝑥 ∈ Fin → ¬ (𝐴𝑥) ∈ FinII))
2726con4d 115 . . . . . . . . . . . . . . 15 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝐴𝑥) ∈ FinII𝑥 ∈ Fin))
2818, 27jaod 858 . . . . . . . . . . . . . 14 ((((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) ∧ 𝑥𝑐) → ((𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → 𝑥 ∈ Fin))
2928ralimdva 3173 . . . . . . . . . . . . 13 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥𝑐 (𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3017, 29syld 47 . . . . . . . . . . . 12 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ∀𝑥𝑐 𝑥 ∈ Fin))
3130impr 454 . . . . . . . . . . 11 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ∀𝑥𝑐 𝑥 ∈ Fin)
32 dfss3 3997 . . . . . . . . . . 11 (𝑐 ⊆ Fin ↔ ∀𝑥𝑐 𝑥 ∈ Fin)
3331, 32sylibr 234 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ⊆ Fin)
34 simprrl 780 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐 ≠ ∅)
3534adantr 480 . . . . . . . . . 10 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → 𝑐 ≠ ∅)
36 fin1a2lem12 10480 . . . . . . . . . 10 (((𝑐 ⊆ 𝒫 𝐴 ∧ [] Or 𝑐 ∧ ¬ 𝑐𝑐) ∧ (𝑐 ⊆ Fin ∧ 𝑐 ≠ ∅)) → ¬ 𝐴 ∈ FinIII)
3711, 13, 14, 33, 35, 36syl32anc 1378 . . . . . . . . 9 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ (¬ 𝑐𝑐 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII))) → ¬ 𝐴 ∈ FinIII)
3837expr 456 . . . . . . . 8 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ¬ 𝑐𝑐) → (∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII) → ¬ 𝐴 ∈ FinIII))
3938impancom 451 . . . . . . 7 (((𝐴𝑉 ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4039an32s 651 . . . . . 6 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → (¬ 𝑐𝑐 → ¬ 𝐴 ∈ FinIII))
4110, 40mt4d 117 . . . . 5 (((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) ∧ (𝑐 ⊆ 𝒫 𝐴 ∧ (𝑐 ≠ ∅ ∧ [] Or 𝑐))) → 𝑐𝑐)
4241exp32 420 . . . 4 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ⊆ 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
431, 42syl5 34 . . 3 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝑐 ∈ 𝒫 𝒫 𝐴 → ((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4443ralrimiv 3151 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐))
45 isfin2 10363 . . 3 (𝐴𝑉 → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4645adantr 480 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → (𝐴 ∈ FinII ↔ ∀𝑐 ∈ 𝒫 𝒫 𝐴((𝑐 ≠ ∅ ∧ [] Or 𝑐) → 𝑐𝑐)))
4744, 46mpbird 257 1 ((𝐴𝑉 ∧ ∀𝑥 ∈ 𝒫 𝐴(𝑥 ∈ Fin ∨ (𝐴𝑥) ∈ FinII)) → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622   cuni 4931   Or wor 5606   [] crpss 7757  Fincfn 9003  FinIIcfin2 10348  FinIIIcfin3 10350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-rpss 7758  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-wdom 9634  df-card 10008  df-fin2 10355  df-fin4 10356  df-fin3 10357
This theorem is referenced by:  fin1a2  10484
  Copyright terms: Public domain W3C validator