Step | Hyp | Ref
| Expression |
1 | | fourierdlem79.q |
. . . . . . . 8
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem79.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem79.p |
. . . . . . . . . 10
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 43657 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simpld 495 |
. . . . . 6
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
8 | | elmapi 8646 |
. . . . . 6
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
10 | 9 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑄:(0...𝑀)⟶ℝ) |
11 | | fourierdlem79.t |
. . . . . . . . 9
⊢ 𝑇 = (𝐵 − 𝐴) |
12 | | fourierdlem79.e |
. . . . . . . . 9
⊢ 𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵 − 𝑥) / 𝑇)) · 𝑇))) |
13 | | fourierdlem79.l |
. . . . . . . . 9
⊢ 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦)) |
14 | | fourierdlem79.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < )) |
15 | 3, 2, 1, 11, 12, 13, 14 | fourierdlem37 43692 |
. . . . . . . 8
⊢ (𝜑 → (𝐼:ℝ⟶(0..^𝑀) ∧ (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}))) |
16 | 15 | simpld 495 |
. . . . . . 7
⊢ (𝜑 → 𝐼:ℝ⟶(0..^𝑀)) |
17 | | fzossfz 13415 |
. . . . . . . 8
⊢
(0..^𝑀) ⊆
(0...𝑀) |
18 | 17 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
19 | 16, 18 | fssd 6627 |
. . . . . 6
⊢ (𝜑 → 𝐼:ℝ⟶(0...𝑀)) |
20 | 19 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼:ℝ⟶(0...𝑀)) |
21 | | fourierdlem79.c |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 ∈ ℝ) |
22 | | fourierdlem79.d |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ ℝ) |
23 | | fourierdlem79.cltd |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐶 < 𝐷) |
24 | | fourierdlem79.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝‘𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
25 | | fourierdlem79.h |
. . . . . . . . . . . . 13
⊢ 𝐻 = ({𝐶, 𝐷} ∪ {𝑥 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄}) |
26 | | fourierdlem79.n |
. . . . . . . . . . . . 13
⊢ 𝑁 = ((♯‘𝐻) − 1) |
27 | | fourierdlem79.s |
. . . . . . . . . . . . 13
⊢ 𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻)) |
28 | 11, 3, 2, 1, 21, 22, 23, 24, 25, 26, 27 | fourierdlem54 43708 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁)) ∧ 𝑆 Isom < , < ((0...𝑁), 𝐻))) |
29 | 28 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 ∈ ℕ ∧ 𝑆 ∈ (𝑂‘𝑁))) |
30 | 29 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (𝑂‘𝑁)) |
31 | 30 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 ∈ (𝑂‘𝑁)) |
32 | 29 | simpld 495 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
33 | 32 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ) |
34 | 24 | fourierdlem2 43657 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
35 | 33, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆 ∈ (𝑂‘𝑁) ↔ (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1)))))) |
36 | 31, 35 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆 ∈ (ℝ ↑m
(0...𝑁)) ∧ (((𝑆‘0) = 𝐶 ∧ (𝑆‘𝑁) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑆‘𝑖) < (𝑆‘(𝑖 + 1))))) |
37 | 36 | simpld 495 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 ∈ (ℝ ↑m
(0...𝑁))) |
38 | | elmapi 8646 |
. . . . . . 7
⊢ (𝑆 ∈ (ℝ
↑m (0...𝑁))
→ 𝑆:(0...𝑁)⟶ℝ) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶ℝ) |
40 | | elfzofz 13412 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
41 | 40 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁)) |
42 | 39, 41 | ffvelrnd 6971 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℝ) |
43 | 20, 42 | ffvelrnd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ (0...𝑀)) |
44 | 10, 43 | ffvelrnd 6971 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ∈ ℝ) |
45 | 44 | rexrd 11034 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ∈
ℝ*) |
46 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼:ℝ⟶(0..^𝑀)) |
47 | 46, 42 | ffvelrnd 6971 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀)) |
48 | | fzofzp1 13493 |
. . . . 5
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
49 | 47, 48 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
50 | 10, 49 | ffvelrnd 6971 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ) |
51 | 50 | rexrd 11034 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈
ℝ*) |
52 | 14 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ))) |
53 | | fveq2 6783 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑆‘𝑗) → (𝐸‘𝑥) = (𝐸‘(𝑆‘𝑗))) |
54 | 53 | fveq2d 6787 |
. . . . . . . . 9
⊢ (𝑥 = (𝑆‘𝑗) → (𝐿‘(𝐸‘𝑥)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
55 | 54 | breq2d 5087 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥)) ↔ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
56 | 55 | rabbidv 3415 |
. . . . . . 7
⊢ (𝑥 = (𝑆‘𝑗) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
57 | 56 | supeq1d 9214 |
. . . . . 6
⊢ (𝑥 = (𝑆‘𝑗) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
58 | 57 | adantl 482 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑥 = (𝑆‘𝑗)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
59 | | ltso 11064 |
. . . . . . 7
⊢ < Or
ℝ |
60 | 59 | supex 9231 |
. . . . . 6
⊢
sup({𝑖 ∈
(0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V |
61 | 60 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V) |
62 | 52, 58, 42, 61 | fvmptd 6891 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
63 | 62 | fveq2d 6787 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) = (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ))) |
64 | | simpl 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝜑) |
65 | 64, 42 | jca 512 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ)) |
66 | | eleq1 2827 |
. . . . . . . . 9
⊢ (𝑥 = (𝑆‘𝑗) → (𝑥 ∈ ℝ ↔ (𝑆‘𝑗) ∈ ℝ)) |
67 | 66 | anbi2d 629 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → ((𝜑 ∧ 𝑥 ∈ ℝ) ↔ (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ))) |
68 | 57, 56 | eleq12d 2834 |
. . . . . . . 8
⊢ (𝑥 = (𝑆‘𝑗) → (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ↔ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))})) |
69 | 67, 68 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}))) |
70 | 15 | simprd 496 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))})) |
71 | 70 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) |
72 | 69, 71 | vtoclg 3506 |
. . . . . 6
⊢ ((𝑆‘𝑗) ∈ ℝ → ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))})) |
73 | 42, 65, 72 | sylc 65 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
74 | | nfrab1 3318 |
. . . . . . 7
⊢
Ⅎ𝑖{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} |
75 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑖ℝ |
76 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑖
< |
77 | 74, 75, 76 | nfsup 9219 |
. . . . . 6
⊢
Ⅎ𝑖sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) |
78 | | nfcv 2908 |
. . . . . 6
⊢
Ⅎ𝑖(0..^𝑀) |
79 | | nfcv 2908 |
. . . . . . . 8
⊢
Ⅎ𝑖𝑄 |
80 | 79, 77 | nffv 6793 |
. . . . . . 7
⊢
Ⅎ𝑖(𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
81 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑖
≤ |
82 | | nfcv 2908 |
. . . . . . 7
⊢
Ⅎ𝑖(𝐿‘(𝐸‘(𝑆‘𝑗))) |
83 | 80, 81, 82 | nfbr 5122 |
. . . . . 6
⊢
Ⅎ𝑖(𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) |
84 | | fveq2 6783 |
. . . . . . 7
⊢ (𝑖 = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) → (𝑄‘𝑖) = (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ))) |
85 | 84 | breq1d 5085 |
. . . . . 6
⊢ (𝑖 = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
86 | 77, 78, 83, 85 | elrabf 3621 |
. . . . 5
⊢
(sup({𝑖 ∈
(0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ↔ (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ (0..^𝑀) ∧ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
87 | 73, 86 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈ (0..^𝑀) ∧ (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
88 | 87 | simprd 496 |
. . 3
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
89 | 63, 88 | eqbrtrd 5097 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑄‘(𝐼‘(𝑆‘𝑗))) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
90 | 2 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑀 ∈ ℕ) |
91 | 1 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑄 ∈ (𝑃‘𝑀)) |
92 | 21 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐶 ∈ ℝ) |
93 | 22 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐷 ∈ ℝ) |
94 | 23 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐶 < 𝐷) |
95 | | 0zd 12340 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
96 | 2 | nnzd 12434 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
97 | | 1zzd 12360 |
. . . . . . 7
⊢ (𝜑 → 1 ∈
ℤ) |
98 | | 0le1 11507 |
. . . . . . . 8
⊢ 0 ≤
1 |
99 | 98 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → 0 ≤ 1) |
100 | 2 | nnge1d 12030 |
. . . . . . 7
⊢ (𝜑 → 1 ≤ 𝑀) |
101 | 95, 96, 97, 99, 100 | elfzd 13256 |
. . . . . 6
⊢ (𝜑 → 1 ∈ (0...𝑀)) |
102 | 101 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 1 ∈ (0...𝑀)) |
103 | | simplr 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑗 ∈ (0..^𝑁)) |
104 | | fourierdlem79.z |
. . . . . . . 8
⊢ 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
105 | | fzofzp1 13493 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
106 | 105 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁)) |
107 | 39, 106 | ffvelrnd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
108 | 107, 42 | resubcld 11412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
109 | 108 | rehalfcld 12229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℝ) |
110 | 9, 101 | ffvelrnd 6971 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑄‘1) ∈ ℝ) |
111 | 3, 2, 1 | fourierdlem11 43666 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵)) |
112 | 111 | simp1d 1141 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ ℝ) |
113 | 110, 112 | resubcld 11412 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑄‘1) − 𝐴) ∈ ℝ) |
114 | 113 | rehalfcld 12229 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
115 | 114 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
116 | 109, 115 | ifcld 4506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
117 | 42, 116 | readdcld 11013 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ∈ ℝ) |
118 | 104, 117 | eqeltrid 2844 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ℝ) |
119 | | 2re 12056 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ |
120 | 119 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 2 ∈ ℝ) |
121 | | elfzoelz 13396 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℤ) |
122 | 121 | zred 12435 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ ℝ) |
123 | 122 | ltp1d 11914 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 < (𝑗 + 1)) |
124 | 123 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 < (𝑗 + 1)) |
125 | 28 | simprd 496 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑆 Isom < , < ((0...𝑁), 𝐻)) |
126 | 125 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆 Isom < , < ((0...𝑁), 𝐻)) |
127 | | isorel 7206 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆 Isom < , < ((0...𝑁), 𝐻) ∧ (𝑗 ∈ (0...𝑁) ∧ (𝑗 + 1) ∈ (0...𝑁))) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
128 | 126, 41, 106, 127 | syl12anc 834 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 < (𝑗 + 1) ↔ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1)))) |
129 | 124, 128 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
130 | 42, 107 | posdifd 11571 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ 0 < ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)))) |
131 | 129, 130 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
132 | | 2pos 12085 |
. . . . . . . . . . . . . 14
⊢ 0 <
2 |
133 | 132 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < 2) |
134 | 108, 120,
131, 133 | divgt0d 11919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
135 | 109, 134 | elrpd 12778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈
ℝ+) |
136 | 119 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 2 ∈
ℝ) |
137 | 2 | nngt0d 12031 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 0 < 𝑀) |
138 | | fzolb 13402 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
(0..^𝑀) ↔ (0 ∈
ℤ ∧ 𝑀 ∈
ℤ ∧ 0 < 𝑀)) |
139 | 95, 96, 137, 138 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ∈ (0..^𝑀)) |
140 | | 0re 10986 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
141 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑖 ∈ (0..^𝑀) ↔ 0 ∈ (0..^𝑀))) |
142 | 141 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 0 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 0 ∈ (0..^𝑀)))) |
143 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑄‘𝑖) = (𝑄‘0)) |
144 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 = 0 → (𝑖 + 1) = (0 + 1)) |
145 | 144 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 = 0 → (𝑄‘(𝑖 + 1)) = (𝑄‘(0 + 1))) |
146 | 143, 145 | breq12d 5088 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 0 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘0) < (𝑄‘(0 + 1)))) |
147 | 142, 146 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 0 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))))) |
148 | 6 | simprd 496 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))) |
149 | 148 | simprd 496 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
150 | 149 | r19.21bi 3135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
151 | 147, 150 | vtoclg 3506 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
ℝ → ((𝜑 ∧ 0
∈ (0..^𝑀)) →
(𝑄‘0) < (𝑄‘(0 +
1)))) |
152 | 140, 151 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 0 ∈ (0..^𝑀)) → (𝑄‘0) < (𝑄‘(0 + 1))) |
153 | 139, 152 | mpdan 684 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) < (𝑄‘(0 + 1))) |
154 | 148 | simpld 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵)) |
155 | 154 | simpld 495 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘0) = 𝐴) |
156 | | 0p1e1 12104 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 1) =
1 |
157 | 156 | fveq2i 6786 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑄‘(0 + 1)) = (𝑄‘1) |
158 | 157 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘(0 + 1)) = (𝑄‘1)) |
159 | 153, 155,
158 | 3brtr3d 5106 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 < (𝑄‘1)) |
160 | 112, 110 | posdifd 11571 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐴 < (𝑄‘1) ↔ 0 < ((𝑄‘1) − 𝐴))) |
161 | 159, 160 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < ((𝑄‘1) − 𝐴)) |
162 | 132 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 < 2) |
163 | 113, 136,
161, 162 | divgt0d 11919 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 < (((𝑄‘1) − 𝐴) / 2)) |
164 | 114, 163 | elrpd 12778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈
ℝ+) |
165 | 164 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ∈
ℝ+) |
166 | 135, 165 | ifcld 4506 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈
ℝ+) |
167 | 42, 166 | ltaddrpd 12814 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
168 | 42, 117, 167 | ltled 11132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
169 | 168, 104 | breqtrrdi 5117 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ 𝑍) |
170 | 42, 109 | readdcld 11013 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
171 | | iftrue 4466 |
. . . . . . . . . . . . 13
⊢ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
172 | 171 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
173 | 109 | leidd 11550 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
174 | 173 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
175 | 172, 174 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
176 | | iffalse 4469 |
. . . . . . . . . . . . 13
⊢ (¬
((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
177 | 176 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
178 | 113 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ∈ ℝ) |
179 | 108 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
180 | | 2rp 12744 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℝ+ |
181 | 180 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 2 ∈
ℝ+) |
182 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) |
183 | 178, 179,
182 | nltled 11134 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ≤ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗))) |
184 | 178, 179,
181, 183 | lediv1dd 12839 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
185 | 177, 184 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
186 | 175, 185 | pm2.61dan 810 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
187 | 116, 109,
42, 186 | leadd2dd 11599 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ≤ ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
188 | 42 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℂ) |
189 | 107 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℂ) |
190 | 188, 189 | addcomd 11186 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) = ((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗))) |
191 | 190 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) = (((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2)) |
192 | 191 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
193 | | halfaddsub 12215 |
. . . . . . . . . . . . . . 15
⊢ (((𝑆‘(𝑗 + 1)) ∈ ℂ ∧ (𝑆‘𝑗) ∈ ℂ) → (((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘(𝑗 + 1)) ∧ ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗))) |
194 | 189, 188,
193 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘(𝑗 + 1)) ∧ ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗))) |
195 | 194 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘(𝑗 + 1)) + (𝑆‘𝑗)) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗)) |
196 | 192, 195 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗)) |
197 | 188, 189 | addcld 11003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) ∈ ℂ) |
198 | 197 | halfcld 12227 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) ∈ ℂ) |
199 | 109 | recnd 11012 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℂ) |
200 | 198, 199,
188 | subsub23d 42833 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (𝑆‘𝑗) ↔ ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
201 | 196, 200 | mpbid 231 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) |
202 | 198, 188,
199 | subaddd 11359 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) − (𝑆‘𝑗)) = (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ↔ ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2))) |
203 | 201, 202 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) = (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2)) |
204 | | avglt2 12221 |
. . . . . . . . . . . 12
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1)))) |
205 | 42, 107, 204 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) < (𝑆‘(𝑗 + 1)) ↔ (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1)))) |
206 | 129, 205 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + (𝑆‘(𝑗 + 1))) / 2) < (𝑆‘(𝑗 + 1))) |
207 | 203, 206 | eqbrtrd 5097 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝑆‘(𝑗 + 1))) |
208 | 117, 170,
107, 187, 207 | lelttrd 11142 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑆‘(𝑗 + 1))) |
209 | 104, 208 | eqbrtrid 5110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 < (𝑆‘(𝑗 + 1))) |
210 | 107 | rexrd 11034 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈
ℝ*) |
211 | | elico2 13152 |
. . . . . . . 8
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ*) →
(𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) ≤ 𝑍 ∧ 𝑍 < (𝑆‘(𝑗 + 1))))) |
212 | 42, 210, 211 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) ≤ 𝑍 ∧ 𝑍 < (𝑆‘(𝑗 + 1))))) |
213 | 118, 169,
209, 212 | mpbir3and 1341 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
214 | 213 | adantr 481 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑍 ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
215 | 112 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐴 ∈ ℝ) |
216 | 111 | simp2d 1142 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
217 | 216 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ∈ ℝ) |
218 | 111 | simp3d 1143 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
219 | 218 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐴 < 𝐵) |
220 | 42 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑆‘𝑗) ∈ ℝ) |
221 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) = 𝐵) |
222 | 167, 104 | breqtrrdi 5117 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < 𝑍) |
223 | 216, 112 | resubcld 11412 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐵 − 𝐴) ∈ ℝ) |
224 | 11, 223 | eqeltrid 2844 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ ℝ) |
225 | 224 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑇 ∈ ℝ) |
226 | 109 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ∈ ℝ) |
227 | 114 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ∈ ℝ) |
228 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) ∈ ℝ) |
229 | 113 | ad2antrr 723 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑄‘1) − 𝐴) ∈ ℝ) |
230 | 180 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 2 ∈
ℝ+) |
231 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) |
232 | 228, 229,
230, 231 | ltdiv1dd 12838 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) < (((𝑄‘1) − 𝐴) / 2)) |
233 | 226, 227,
232 | ltled 11132 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
234 | 172, 233 | eqbrtrd 5097 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
235 | 176 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) − 𝐴) / 2)) |
236 | 114 | leidd 11550 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
237 | 236 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (((𝑄‘1) − 𝐴) / 2) ≤ (((𝑄‘1) − 𝐴) / 2)) |
238 | 235, 237 | eqbrtrd 5097 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
239 | 238 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
240 | 234, 239 | pm2.61dan 810 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ (((𝑄‘1) − 𝐴) / 2)) |
241 | 223 | rehalfcld 12229 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝐴) / 2) ∈ ℝ) |
242 | 180 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 2 ∈
ℝ+) |
243 | 112 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
244 | 216 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
245 | 3, 2, 1 | fourierdlem15 43670 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑄:(0...𝑀)⟶(𝐴[,]𝐵)) |
246 | 245, 101 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑄‘1) ∈ (𝐴[,]𝐵)) |
247 | | iccleub 13143 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝑄‘1) ∈ (𝐴[,]𝐵)) → (𝑄‘1) ≤ 𝐵) |
248 | 243, 244,
246, 247 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑄‘1) ≤ 𝐵) |
249 | 110, 216,
112, 248 | lesub1dd 11600 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝑄‘1) − 𝐴) ≤ (𝐵 − 𝐴)) |
250 | 113, 223,
242, 249 | lediv1dd 12839 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ ((𝐵 − 𝐴) / 2)) |
251 | 11 | eqcomi 2748 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 − 𝐴) = 𝑇 |
252 | 251 | oveq1i 7294 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 − 𝐴) / 2) = (𝑇 / 2) |
253 | 112, 216 | posdifd 11571 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) |
254 | 218, 253 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 0 < (𝐵 − 𝐴)) |
255 | 254, 11 | breqtrrdi 5117 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 0 < 𝑇) |
256 | 224, 255 | elrpd 12778 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
257 | | rphalflt 12768 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ∈ ℝ+
→ (𝑇 / 2) < 𝑇) |
258 | 256, 257 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑇 / 2) < 𝑇) |
259 | 252, 258 | eqbrtrid 5110 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵 − 𝐴) / 2) < 𝑇) |
260 | 114, 241,
224, 250, 259 | lelttrd 11142 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) < 𝑇) |
261 | 114, 224,
260 | ltled 11132 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ≤ 𝑇) |
262 | 261 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑄‘1) − 𝐴) / 2) ≤ 𝑇) |
263 | 116, 115,
225, 240, 262 | letrd 11141 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ≤ 𝑇) |
264 | 116, 225,
42, 263 | leadd2dd 11599 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) ≤ ((𝑆‘𝑗) + 𝑇)) |
265 | 104, 264 | eqbrtrid 5110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)) |
266 | 42 | rexrd 11034 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈
ℝ*) |
267 | 42, 225 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) + 𝑇) ∈ ℝ) |
268 | | elioc2 13151 |
. . . . . . . . . . 11
⊢ (((𝑆‘𝑗) ∈ ℝ* ∧ ((𝑆‘𝑗) + 𝑇) ∈ ℝ) → (𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇)) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) < 𝑍 ∧ 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)))) |
269 | 266, 267,
268 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇)) ↔ (𝑍 ∈ ℝ ∧ (𝑆‘𝑗) < 𝑍 ∧ 𝑍 ≤ ((𝑆‘𝑗) + 𝑇)))) |
270 | 118, 222,
265, 269 | mpbir3and 1341 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇))) |
271 | 270 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑍 ∈ ((𝑆‘𝑗)(,]((𝑆‘𝑗) + 𝑇))) |
272 | 215, 217,
219, 11, 12, 220, 221, 271 | fourierdlem26 43681 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) = (𝐴 + (𝑍 − (𝑆‘𝑗)))) |
273 | 104 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑍 = ((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
274 | 273 | oveq1d 7299 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑍 − (𝑆‘𝑗)) = (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) |
275 | 274 | oveq2d 7300 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (𝑍 − (𝑆‘𝑗))) = (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)))) |
276 | 275 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + (𝑍 − (𝑆‘𝑗))) = (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)))) |
277 | 116 | recnd 11012 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)) ∈ ℂ) |
278 | 188, 277 | pncan2d 11343 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗)) = if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) |
279 | 278 | oveq2d 7300 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
280 | 279 | adantr 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + (((𝑆‘𝑗) + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) − (𝑆‘𝑗))) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
281 | 272, 276,
280 | 3eqtrd 2783 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) = (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2)))) |
282 | 171 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
283 | 282 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2))) |
284 | 112 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈ ℝ) |
285 | 284, 109 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
286 | 285 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) ∈ ℝ) |
287 | 284, 115 | readdcld 11013 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
288 | 287 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) ∈ ℝ) |
289 | 110 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝑄‘1) ∈ ℝ) |
290 | 112 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → 𝐴 ∈ ℝ) |
291 | 226, 227,
290, 232 | ltadd2dd 11143 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
292 | 110 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑄‘1) ∈ ℂ) |
293 | 112 | recnd 11012 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ ℂ) |
294 | | halfaddsub 12215 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑄‘1) ∈ ℂ ∧
𝐴 ∈ ℂ) →
(((((𝑄‘1) + 𝐴) / 2) + (((𝑄‘1) − 𝐴) / 2)) = (𝑄‘1) ∧ ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴)) |
295 | 292, 293,
294 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) + (((𝑄‘1) − 𝐴) / 2)) = (𝑄‘1) ∧ ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴)) |
296 | 295 | simprd 496 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) = 𝐴) |
297 | 296 | oveq1d 7299 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) + (((𝑄‘1) − 𝐴) / 2)) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
298 | 110, 112 | readdcld 11013 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝑄‘1) + 𝐴) ∈ ℝ) |
299 | 298 | rehalfcld 12229 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) ∈ ℝ) |
300 | 299 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) ∈ ℂ) |
301 | 114 | recnd 11012 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) − 𝐴) / 2) ∈ ℂ) |
302 | 300, 301 | npcand 11345 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((((𝑄‘1) + 𝐴) / 2) − (((𝑄‘1) − 𝐴) / 2)) + (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) + 𝐴) / 2)) |
303 | 297, 302 | eqtr3d 2781 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) = (((𝑄‘1) + 𝐴) / 2)) |
304 | 110, 110 | readdcld 11013 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘1) + (𝑄‘1)) ∈ ℝ) |
305 | 112, 110,
110, 159 | ltadd2dd 11143 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑄‘1) + 𝐴) < ((𝑄‘1) + (𝑄‘1))) |
306 | 298, 304,
242, 305 | ltdiv1dd 12838 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) < (((𝑄‘1) + (𝑄‘1)) / 2)) |
307 | 292 | 2timesd 12225 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (2 · (𝑄‘1)) = ((𝑄‘1) + (𝑄‘1))) |
308 | 307 | eqcomd 2745 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑄‘1) + (𝑄‘1)) = (2 · (𝑄‘1))) |
309 | 308 | oveq1d 7299 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑄‘1) + (𝑄‘1)) / 2) = ((2 · (𝑄‘1)) /
2)) |
310 | | 2cnd 12060 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ∈
ℂ) |
311 | | 2ne0 12086 |
. . . . . . . . . . . . . . . 16
⊢ 2 ≠
0 |
312 | 311 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 2 ≠ 0) |
313 | 292, 310,
312 | divcan3d 11765 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((2 · (𝑄‘1)) / 2) = (𝑄‘1)) |
314 | 309, 313 | eqtrd 2779 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (((𝑄‘1) + (𝑄‘1)) / 2) = (𝑄‘1)) |
315 | 306, 314 | breqtrd 5101 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑄‘1) + 𝐴) / 2) < (𝑄‘1)) |
316 | 303, 315 | eqbrtrd 5097 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
317 | 316 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
318 | 286, 288,
289, 291, 317 | lttrd 11145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2)) < (𝑄‘1)) |
319 | 283, 318 | eqbrtrd 5097 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
320 | 176 | oveq2d 7300 |
. . . . . . . . . 10
⊢ (¬
((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
321 | 320 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) = (𝐴 + (((𝑄‘1) − 𝐴) / 2))) |
322 | 316 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + (((𝑄‘1) − 𝐴) / 2)) < (𝑄‘1)) |
323 | 321, 322 | eqbrtrd 5097 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ ((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
324 | 319, 323 | pm2.61dan 810 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
325 | 324 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐴 + if(((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) < ((𝑄‘1) − 𝐴), (((𝑆‘(𝑗 + 1)) − (𝑆‘𝑗)) / 2), (((𝑄‘1) − 𝐴) / 2))) < (𝑄‘1)) |
326 | 281, 325 | eqbrtrd 5097 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘𝑍) < (𝑄‘1)) |
327 | | eqid 2739 |
. . . . 5
⊢ ((𝑄‘1) − ((𝐸‘𝑍) − 𝑍)) = ((𝑄‘1) − ((𝐸‘𝑍) − 𝑍)) |
328 | 11, 3, 90, 91, 92, 93, 94, 24, 25, 26, 27, 12, 102, 103, 214, 326, 327 | fourierdlem63 43717 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘1)) |
329 | 14 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ))) |
330 | 57 | adantl 482 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ 𝑥 = (𝑆‘𝑗)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
331 | 60 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) ∈
V) |
332 | 329, 330,
220, 331 | fvmptd 6891 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐼‘(𝑆‘𝑗)) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
333 | | fveq2 6783 |
. . . . . . . . . . . . 13
⊢ ((𝐸‘(𝑆‘𝑗)) = 𝐵 → (𝐿‘(𝐸‘(𝑆‘𝑗))) = (𝐿‘𝐵)) |
334 | 13 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
335 | | iftrue 4466 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐵 → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝐴) |
336 | 335 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑦 = 𝐵) → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝐴) |
337 | | ubioc1 13141 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → 𝐵 ∈ (𝐴(,]𝐵)) |
338 | 243, 244,
218, 337 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ∈ (𝐴(,]𝐵)) |
339 | 334, 336,
338, 112 | fvmptd 6891 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿‘𝐵) = 𝐴) |
340 | 333, 339 | sylan9eqr 2801 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) = 𝐴) |
341 | 340 | breq2d 5087 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘𝑖) ≤ 𝐴)) |
342 | 341 | rabbidv 3415 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} = {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
343 | 342 | supeq1d 9214 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < )) |
344 | 343 | adantlr 712 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < )) |
345 | | simpl 483 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝜑) |
346 | | elrabi 3619 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} → 𝑗 ∈ (0..^𝑀)) |
347 | 346 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 ∈ (0..^𝑀)) |
348 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑗 → (𝑄‘𝑖) = (𝑄‘𝑗)) |
349 | 348 | breq1d 5085 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑗 → ((𝑄‘𝑖) ≤ 𝐴 ↔ (𝑄‘𝑗) ≤ 𝐴)) |
350 | 349 | elrab 3625 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ↔ (𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴)) |
351 | 350 | simprbi 497 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} → (𝑄‘𝑗) ≤ 𝐴) |
352 | 351 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → (𝑄‘𝑗) ≤ 𝐴) |
353 | | simp3 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (𝑄‘𝑗) ≤ 𝐴) |
354 | 112 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 ∈ ℝ) |
355 | 110 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘1) ∈ ℝ) |
356 | 9 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
357 | 18 | sselda 3922 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → 𝑗 ∈ (0...𝑀)) |
358 | 356, 357 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
359 | 358 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘𝑗) ∈ ℝ) |
360 | 159 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 < (𝑄‘1)) |
361 | | 1zzd 12360 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 1 ∈
ℤ) |
362 | | elfzoelz 13396 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℤ) |
363 | 362 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈ ℤ) |
364 | | 1e0p1 12488 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 = (0 +
1) |
365 | | simpr 485 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → ¬ 𝑗 ≤ 0) |
366 | | 0red 10987 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 ∈
ℝ) |
367 | 363 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈ ℝ) |
368 | 366, 367 | ltnled 11131 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 < 𝑗 ↔ ¬ 𝑗 ≤ 0)) |
369 | 365, 368 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 < 𝑗) |
370 | | 0zd 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 0 ∈
ℤ) |
371 | | zltp1le 12379 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((0
∈ ℤ ∧ 𝑗
∈ ℤ) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
372 | 370, 363,
371 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 < 𝑗 ↔ (0 + 1) ≤ 𝑗)) |
373 | 369, 372 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (0 + 1) ≤ 𝑗) |
374 | 364, 373 | eqbrtrid 5110 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 1 ≤ 𝑗) |
375 | | eluz2 12597 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑗 ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 1 ≤
𝑗)) |
376 | 361, 363,
374, 375 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝑗 ∈
(ℤ≥‘1)) |
377 | 9 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑄:(0...𝑀)⟶ℝ) |
378 | | 0zd 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 0 ∈ ℤ) |
379 | 96 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑀 ∈ ℤ) |
380 | | elfzelz 13265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℤ) |
381 | 380 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℤ) |
382 | | 0red 10987 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 0 ∈ ℝ) |
383 | 380 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ∈ ℝ) |
384 | | 1red 10985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 1 ∈ ℝ) |
385 | | 0lt1 11506 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ 0 <
1 |
386 | 385 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 0 < 1) |
387 | | elfzle1 13268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 1 ≤ 𝑙) |
388 | 382, 384,
383, 386, 387 | ltletrd 11144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...𝑗) → 0 < 𝑙) |
389 | 382, 383,
388 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑙 ∈ (1...𝑗) → 0 ≤ 𝑙) |
390 | 389 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 0 ≤ 𝑙) |
391 | 383 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ ℝ) |
392 | 96 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑀 ∈ ℝ) |
393 | 392 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑀 ∈ ℝ) |
394 | 362 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℝ) |
395 | 394 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 ∈ ℝ) |
396 | | elfzle2 13269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...𝑗) → 𝑙 ≤ 𝑗) |
397 | 396 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ 𝑗) |
398 | | elfzolt2 13405 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 < 𝑀) |
399 | 398 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑗 < 𝑀) |
400 | 391, 395,
393, 397, 399 | lelttrd 11142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 < 𝑀) |
401 | 391, 393,
400 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ≤ 𝑀) |
402 | 378, 379,
381, 390, 401 | elfzd 13256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → 𝑙 ∈ (0...𝑀)) |
403 | 377, 402 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...𝑗)) → (𝑄‘𝑙) ∈ ℝ) |
404 | 403 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) ∧ 𝑙 ∈ (1...𝑗)) → (𝑄‘𝑙) ∈ ℝ) |
405 | 9 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑄:(0...𝑀)⟶ℝ) |
406 | | 0zd 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ∈
ℤ) |
407 | 96 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℤ) |
408 | | elfzelz 13265 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℤ) |
409 | 408 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ) |
410 | | 0red 10987 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ∈
ℝ) |
411 | 408 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ∈ ℝ) |
412 | | 1red 10985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ∈
ℝ) |
413 | 385 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 <
1) |
414 | | elfzle1 13268 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ≤ 𝑙) |
415 | 410, 412,
411, 413, 414 | ltletrd 11144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 < 𝑙) |
416 | 410, 411,
415 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ≤ 𝑙) |
417 | 416 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ 𝑙) |
418 | 409 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ) |
419 | 392 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℝ) |
420 | 394 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ) |
421 | 411 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℝ) |
422 | | peano2rem 11297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ ℝ → (𝑗 − 1) ∈
ℝ) |
423 | 394, 422 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 − 1) ∈ ℝ) |
424 | 423 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ) |
425 | 394 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 ∈ ℝ) |
426 | | elfzle2 13269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 𝑙 ≤ (𝑗 − 1)) |
427 | 426 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ (𝑗 − 1)) |
428 | 425 | ltm1d 11916 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑗 − 1) < 𝑗) |
429 | 421, 424,
425, 427, 428 | lelttrd 11142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑗) |
430 | 429 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑗) |
431 | 398 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 < 𝑀) |
432 | 418, 420,
419, 430, 431 | lttrd 11145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑀) |
433 | 418, 419,
432 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ≤ 𝑀) |
434 | 406, 407,
409, 417, 433 | elfzd 13256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0...𝑀)) |
435 | 405, 434 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ∈ ℝ) |
436 | 409 | peano2zd 12438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℤ) |
437 | 411, 412 | readdcld 11013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ∈ ℝ) |
438 | 411, 412,
415, 413 | addgt0d 11559 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 < (𝑙 + 1)) |
439 | 410, 437,
438 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 0 ≤ (𝑙 + 1)) |
440 | 439 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ (𝑙 + 1)) |
441 | 437 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ ℝ) |
442 | 437 | recnd 11012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ∈ ℂ) |
443 | | 1cnd 10979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → 1 ∈
ℂ) |
444 | 442, 443 | npcand 11345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (((𝑙 + 1) − 1) + 1) = (𝑙 + 1)) |
445 | 444 | eqcomd 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) = (((𝑙 + 1) − 1) + 1)) |
446 | 445 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) = (((𝑙 + 1) − 1) + 1)) |
447 | | peano2re 11157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑙 ∈ ℝ → (𝑙 + 1) ∈
ℝ) |
448 | | peano2rem 11297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑙 + 1) ∈ ℝ →
((𝑙 + 1) − 1) ∈
ℝ) |
449 | 421, 447,
448 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) − 1) ∈
ℝ) |
450 | | peano2re 11157 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((𝑗 − 1) ∈ ℝ
→ ((𝑗 − 1) + 1)
∈ ℝ) |
451 | | peano2rem 11297 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (((𝑗 − 1) + 1) ∈ ℝ
→ (((𝑗 − 1) + 1)
− 1) ∈ ℝ) |
452 | 424, 450,
451 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑗 − 1) + 1) − 1) ∈
ℝ) |
453 | | 1red 10985 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 1 ∈
ℝ) |
454 | | elfzel2 13263 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑗 − 1) ∈ ℤ) |
455 | 454 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑗 − 1) ∈ ℝ) |
456 | 455, 412 | readdcld 11013 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → ((𝑗 − 1) + 1) ∈
ℝ) |
457 | 411, 455,
412, 426 | leadd1dd 11598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → (𝑙 + 1) ≤ ((𝑗 − 1) + 1)) |
458 | 437, 456,
412, 457 | lesub1dd 11600 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑙 ∈ (1...(𝑗 − 1)) → ((𝑙 + 1) − 1) ≤ (((𝑗 − 1) + 1) − 1)) |
459 | 458 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((𝑙 + 1) − 1) ≤ (((𝑗 − 1) + 1) − 1)) |
460 | 449, 452,
453, 459 | leadd1dd 11598 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑙 + 1) − 1) + 1) ≤ ((((𝑗 − 1) + 1) − 1) +
1)) |
461 | | peano2zm 12372 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . 38
⊢ (𝑗 ∈ ℤ → (𝑗 − 1) ∈
ℤ) |
462 | 362, 461 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . 37
⊢ (𝑗 ∈ (0..^𝑀) → (𝑗 − 1) ∈ ℤ) |
463 | 462 | peano2zd 12438 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . 36
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) ∈
ℤ) |
464 | 463 | zcnd 12436 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) ∈
ℂ) |
465 | | 1cnd 10979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0..^𝑀) → 1 ∈ ℂ) |
466 | 464, 465 | npcand 11345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0..^𝑀) → ((((𝑗 − 1) + 1) − 1) + 1) = ((𝑗 − 1) +
1)) |
467 | 394 | recnd 11012 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (𝑗 ∈ (0..^𝑀) → 𝑗 ∈ ℂ) |
468 | 467, 465 | npcand 11345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ (𝑗 ∈ (0..^𝑀) → ((𝑗 − 1) + 1) = 𝑗) |
469 | 466, 468 | eqtrd 2779 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (𝑗 ∈ (0..^𝑀) → ((((𝑗 − 1) + 1) − 1) + 1) = 𝑗) |
470 | 469 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → ((((𝑗 − 1) + 1) − 1) + 1) = 𝑗) |
471 | 460, 470 | breqtrd 5101 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (((𝑙 + 1) − 1) + 1) ≤ 𝑗) |
472 | 446, 471 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑗) |
473 | 472 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑗) |
474 | 441, 420,
419, 473, 431 | lelttrd 11142 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) < 𝑀) |
475 | 441, 419,
474 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ≤ 𝑀) |
476 | 406, 407,
436, 440, 475 | elfzd 13256 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑙 + 1) ∈ (0...𝑀)) |
477 | 405, 476 | ffvelrnd 6971 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘(𝑙 + 1)) ∈ ℝ) |
478 | | simpll 764 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝜑) |
479 | | 0zd 12340 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ∈
ℤ) |
480 | 408 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ ℤ) |
481 | 416 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 0 ≤ 𝑙) |
482 | | eluz2 12597 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑙 ∈
(ℤ≥‘0) ↔ (0 ∈ ℤ ∧ 𝑙 ∈ ℤ ∧ 0 ≤
𝑙)) |
483 | 479, 480,
481, 482 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈
(ℤ≥‘0)) |
484 | | elfzoel2 13395 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑗 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
485 | 484 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℤ) |
486 | 485 | zred 12435 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑀 ∈ ℝ) |
487 | 398 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑗 < 𝑀) |
488 | 421, 425,
486, 429, 487 | lttrd 11145 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 < 𝑀) |
489 | | elfzo2 13399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑙 ∈ (0..^𝑀) ↔ (𝑙 ∈ (ℤ≥‘0)
∧ 𝑀 ∈ ℤ
∧ 𝑙 < 𝑀)) |
490 | 483, 485,
488, 489 | syl3anbrc 1342 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑗 ∈ (0..^𝑀) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0..^𝑀)) |
491 | 490 | adantll 711 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → 𝑙 ∈ (0..^𝑀)) |
492 | | eleq1 2827 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑖 ∈ (0..^𝑀) ↔ 𝑙 ∈ (0..^𝑀))) |
493 | 492 | anbi2d 629 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑙 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑙 ∈ (0..^𝑀)))) |
494 | | fveq2 6783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑄‘𝑖) = (𝑄‘𝑙)) |
495 | | oveq1 7291 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑖 = 𝑙 → (𝑖 + 1) = (𝑙 + 1)) |
496 | 495 | fveq2d 6787 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑖 = 𝑙 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑙 + 1))) |
497 | 494, 496 | breq12d 5088 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑖 = 𝑙 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑙) < (𝑄‘(𝑙 + 1)))) |
498 | 493, 497 | imbi12d 345 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑖 = 𝑙 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))))) |
499 | 498, 150 | chvarvv 2003 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑙 ∈ (0..^𝑀)) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))) |
500 | 478, 491,
499 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) < (𝑄‘(𝑙 + 1))) |
501 | 435, 477,
500 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ≤ (𝑄‘(𝑙 + 1))) |
502 | 501 | adantlr 712 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) ∧ 𝑙 ∈ (1...(𝑗 − 1))) → (𝑄‘𝑙) ≤ (𝑄‘(𝑙 + 1))) |
503 | 376, 404,
502 | monoord 13762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝑄‘1) ≤ (𝑄‘𝑗)) |
504 | 354, 355,
359, 360, 503 | ltletrd 11144 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → 𝐴 < (𝑄‘𝑗)) |
505 | 354, 359 | ltnled 11131 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → (𝐴 < (𝑄‘𝑗) ↔ ¬ (𝑄‘𝑗) ≤ 𝐴)) |
506 | 504, 505 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) ∧ ¬ 𝑗 ≤ 0) → ¬ (𝑄‘𝑗) ≤ 𝐴) |
507 | 506 | ex 413 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀)) → (¬ 𝑗 ≤ 0 → ¬ (𝑄‘𝑗) ≤ 𝐴)) |
508 | 507 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (¬ 𝑗 ≤ 0 → ¬ (𝑄‘𝑗) ≤ 𝐴)) |
509 | 353, 508 | mt4d 117 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 ≤ 0) |
510 | | elfzole1 13404 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0..^𝑀) → 0 ≤ 𝑗) |
511 | 510 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 0 ≤ 𝑗) |
512 | 394 | 3ad2ant2 1133 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 ∈ ℝ) |
513 | | 0red 10987 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 0 ∈ ℝ) |
514 | 512, 513 | letri3d 11126 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → (𝑗 = 0 ↔ (𝑗 ≤ 0 ∧ 0 ≤ 𝑗))) |
515 | 509, 511,
514 | mpbir2and 710 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑀) ∧ (𝑄‘𝑗) ≤ 𝐴) → 𝑗 = 0) |
516 | 345, 347,
352, 515 | syl3anc 1370 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 = 0) |
517 | | velsn 4578 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ {0} ↔ 𝑗 = 0) |
518 | 516, 517 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) → 𝑗 ∈ {0}) |
519 | 518 | ralrimiva 3104 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}𝑗 ∈ {0}) |
520 | | dfss3 3910 |
. . . . . . . . . . . . 13
⊢ ({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ⊆ {0} ↔ ∀𝑗 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}𝑗 ∈ {0}) |
521 | 519, 520 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ⊆ {0}) |
522 | 155, 112 | eqeltrd 2840 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑄‘0) ∈ ℝ) |
523 | 522, 155 | eqled 11087 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑄‘0) ≤ 𝐴) |
524 | 143 | breq1d 5085 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 0 → ((𝑄‘𝑖) ≤ 𝐴 ↔ (𝑄‘0) ≤ 𝐴)) |
525 | 524 | elrab 3625 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ 𝐴)) |
526 | 139, 523,
525 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
527 | 526 | snssd 4743 |
. . . . . . . . . . . 12
⊢ (𝜑 → {0} ⊆ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}) |
528 | 521, 527 | eqssd 3939 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴} = {0}) |
529 | 528 | supeq1d 9214 |
. . . . . . . . . 10
⊢ (𝜑 → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = sup({0}, ℝ, <
)) |
530 | | supsn 9240 |
. . . . . . . . . . . 12
⊢ (( <
Or ℝ ∧ 0 ∈ ℝ) → sup({0}, ℝ, < ) =
0) |
531 | 59, 140, 530 | mp2an 689 |
. . . . . . . . . . 11
⊢ sup({0},
ℝ, < ) = 0 |
532 | 531 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → sup({0}, ℝ, < ) =
0) |
533 | 529, 532 | eqtrd 2779 |
. . . . . . . . 9
⊢ (𝜑 → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = 0) |
534 | 533 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ 𝐴}, ℝ, < ) = 0) |
535 | 332, 344,
534 | 3eqtrd 2783 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐼‘(𝑆‘𝑗)) = 0) |
536 | 535 | oveq1d 7299 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → ((𝐼‘(𝑆‘𝑗)) + 1) = (0 + 1)) |
537 | 536 | fveq2d 6787 |
. . . . 5
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘(0 + 1))) |
538 | 537, 157 | eqtr2di 2796 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝑄‘1) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
539 | 328, 538 | breqtrd 5101 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
540 | 65 | adantr 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝜑 ∧ (𝑆‘𝑗) ∈ ℝ)) |
541 | | simplr 766 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝑗 ∈ (0..^𝑁)) |
542 | 13 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
543 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → 𝑦 = (𝐸‘(𝑆‘𝑗))) |
544 | | neqne 2952 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 → (𝐸‘(𝑆‘𝑗)) ≠ 𝐵) |
545 | 544 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → (𝐸‘(𝑆‘𝑗)) ≠ 𝐵) |
546 | 543, 545 | eqnetrd 3012 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → 𝑦 ≠ 𝐵) |
547 | 546 | neneqd 2949 |
. . . . . . . . . . . . . 14
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → ¬ 𝑦 = 𝐵) |
548 | 547 | iffalsed 4471 |
. . . . . . . . . . . . 13
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = 𝑦) |
549 | 548, 543 | eqtrd 2779 |
. . . . . . . . . . . 12
⊢ ((¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = (𝐸‘(𝑆‘𝑗))) |
550 | 549 | adantll 711 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ 𝑦 = (𝐸‘(𝑆‘𝑗))) → if(𝑦 = 𝐵, 𝐴, 𝑦) = (𝐸‘(𝑆‘𝑗))) |
551 | 112, 216,
218, 11, 12 | fourierdlem4 43659 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
552 | 551 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐸:ℝ⟶(𝐴(,]𝐵)) |
553 | 552, 42 | ffvelrnd 6971 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵)) |
554 | 553 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵)) |
555 | 542, 550,
554, 554 | fvmptd 6891 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) = (𝐸‘(𝑆‘𝑗))) |
556 | 555 | eqcomd 2745 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
557 | 112, 216,
218, 13 | fourierdlem17 43672 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
558 | 557 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
559 | 112, 216 | iccssred 13175 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
560 | 559 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ) |
561 | 558, 560 | fssd 6627 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐿:(𝐴(,]𝐵)⟶ℝ) |
562 | 561, 553 | ffvelrnd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
563 | 562 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
564 | 556, 563 | eqeltrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ∈ ℝ) |
565 | 216 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ∈ ℝ) |
566 | 243 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐴 ∈
ℝ*) |
567 | 216 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐵 ∈ ℝ) |
568 | | elioc2 13151 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵))) |
569 | 566, 567,
568 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘𝑗)) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵))) |
570 | 553, 569 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐸‘(𝑆‘𝑗)) ∈ ℝ ∧ 𝐴 < (𝐸‘(𝑆‘𝑗)) ∧ (𝐸‘(𝑆‘𝑗)) ≤ 𝐵)) |
571 | 570 | simp3d 1143 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘𝑗)) ≤ 𝐵) |
572 | 571 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) ≤ 𝐵) |
573 | 544 | necomd 3000 |
. . . . . . . . 9
⊢ (¬
(𝐸‘(𝑆‘𝑗)) = 𝐵 → 𝐵 ≠ (𝐸‘(𝑆‘𝑗))) |
574 | 573 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → 𝐵 ≠ (𝐸‘(𝑆‘𝑗))) |
575 | 564, 565,
572, 574 | leneltd 11138 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) < 𝐵) |
576 | 575 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < 𝐵) |
577 | | oveq1 7291 |
. . . . . . . . . . 11
⊢ ((𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → ((𝐼‘(𝑆‘𝑗)) + 1) = ((𝑀 − 1) + 1)) |
578 | 2 | nncnd 11998 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℂ) |
579 | | 1cnd 10979 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℂ) |
580 | 578, 579 | npcand 11345 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 − 1) + 1) = 𝑀) |
581 | 577, 580 | sylan9eqr 2801 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) = 𝑀) |
582 | 581 | fveq2d 6787 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) = (𝑄‘𝑀)) |
583 | 154 | simprd 496 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑄‘𝑀) = 𝐵) |
584 | 583 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘𝑀) = 𝐵) |
585 | 582, 584 | eqtr2d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
586 | 585 | adantlr 712 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
587 | 586 | adantlr 712 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝐵 = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
588 | 576, 587 | breqtrd 5101 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
589 | 556 | adantr 481 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) = (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
590 | | ssrab2 4014 |
. . . . . . . . . . . . 13
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ (0..^𝑀) |
591 | | fzssz 13267 |
. . . . . . . . . . . . . . 15
⊢
(0...𝑀) ⊆
ℤ |
592 | 17, 591 | sstri 3931 |
. . . . . . . . . . . . . 14
⊢
(0..^𝑀) ⊆
ℤ |
593 | | zssre 12335 |
. . . . . . . . . . . . . 14
⊢ ℤ
⊆ ℝ |
594 | 592, 593 | sstri 3931 |
. . . . . . . . . . . . 13
⊢
(0..^𝑀) ⊆
ℝ |
595 | 590, 594 | sstri 3931 |
. . . . . . . . . . . 12
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ |
596 | 595 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ) |
597 | 56 | neeq1d 3004 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑆‘𝑗) → ({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅ ↔ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅)) |
598 | 67, 597 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑆‘𝑗) → (((𝜑 ∧ 𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) ↔ ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅))) |
599 | 139 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈ (0..^𝑀)) |
600 | 523 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ 𝐴) |
601 | | iftrue 4466 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐸‘𝑥) = 𝐵 → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) = 𝐴) |
602 | 601 | eqcomd 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐸‘𝑥) = 𝐵 → 𝐴 = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
603 | 602 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → 𝐴 = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
604 | 600, 603 | breqtrd 5101 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
605 | 522 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ∈ ℝ) |
606 | 112 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈ ℝ) |
607 | 606 | rexrd 11034 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 ∈
ℝ*) |
608 | 216 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
609 | | iocssre 13168 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ (𝐴(,]𝐵) ⊆
ℝ) |
610 | 607, 608,
609 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ) |
611 | 551 | ffvelrnda 6970 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐸‘𝑥) ∈ (𝐴(,]𝐵)) |
612 | 610, 611 | sseldd 3923 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐸‘𝑥) ∈ ℝ) |
613 | 155 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) = 𝐴) |
614 | | elioc2 13151 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ)
→ ((𝐸‘𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵))) |
615 | 607, 608,
614 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐸‘𝑥) ∈ (𝐴(,]𝐵) ↔ ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵))) |
616 | 611, 615 | mpbid 231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → ((𝐸‘𝑥) ∈ ℝ ∧ 𝐴 < (𝐸‘𝑥) ∧ (𝐸‘𝑥) ≤ 𝐵)) |
617 | 616 | simp2d 1142 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐴 < (𝐸‘𝑥)) |
618 | 613, 617 | eqbrtrd 5097 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) < (𝐸‘𝑥)) |
619 | 605, 612,
618 | ltled 11132 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐸‘𝑥)) |
620 | 619 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ (𝐸‘𝑥)) |
621 | | iffalse 4469 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
(𝐸‘𝑥) = 𝐵 → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) = (𝐸‘𝑥)) |
622 | 621 | eqcomd 2745 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (¬
(𝐸‘𝑥) = 𝐵 → (𝐸‘𝑥) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
623 | 622 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝐸‘𝑥) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
624 | 620, 623 | breqtrd 5101 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ¬ (𝐸‘𝑥) = 𝐵) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
625 | 604, 624 | pm2.61dan 810 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
626 | 13 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐿 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))) |
627 | | eqeq1 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐸‘𝑥) → (𝑦 = 𝐵 ↔ (𝐸‘𝑥) = 𝐵)) |
628 | | id 22 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝐸‘𝑥) → 𝑦 = (𝐸‘𝑥)) |
629 | 627, 628 | ifbieq2d 4486 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝐸‘𝑥) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
630 | 629 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑦 = (𝐸‘𝑥)) → if(𝑦 = 𝐵, 𝐴, 𝑦) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
631 | 606, 612 | ifcld 4506 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥)) ∈ ℝ) |
632 | 626, 630,
611, 631 | fvmptd 6891 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐿‘(𝐸‘𝑥)) = if((𝐸‘𝑥) = 𝐵, 𝐴, (𝐸‘𝑥))) |
633 | 625, 632 | breqtrrd 5103 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥))) |
634 | 143 | breq1d 5085 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 0 → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥)) ↔ (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥)))) |
635 | 634 | elrab 3625 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ↔ (0 ∈ (0..^𝑀) ∧ (𝑄‘0) ≤ (𝐿‘(𝐸‘𝑥)))) |
636 | 599, 633,
635 | sylanbrc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 0 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))}) |
637 | | ne0i 4269 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
{𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) |
638 | 636, 637 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘𝑥))} ≠ ∅) |
639 | 598, 638 | vtoclg 3506 |
. . . . . . . . . . . . 13
⊢ ((𝑆‘𝑗) ∈ ℝ → ((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅)) |
640 | 42, 65, 639 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅) |
641 | 640 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅) |
642 | 595 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ) |
643 | | fzofi 13703 |
. . . . . . . . . . . . . . 15
⊢
(0..^𝑀) ∈
Fin |
644 | | ssfi 8965 |
. . . . . . . . . . . . . . 15
⊢
(((0..^𝑀) ∈ Fin
∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ (0..^𝑀)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) |
645 | 643, 590,
644 | mp2an 689 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin |
646 | 645 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) |
647 | | fimaxre2 11929 |
. . . . . . . . . . . . 13
⊢ (({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
648 | 642, 646,
647 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
649 | 648 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) |
650 | | 0red 10987 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ∈ ℝ) |
651 | 594, 47 | sselid 3920 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ ℝ) |
652 | | 1red 10985 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 1 ∈ ℝ) |
653 | 651, 652 | readdcld 11013 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℝ) |
654 | | elfzouz 13400 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → (𝐼‘(𝑆‘𝑗)) ∈
(ℤ≥‘0)) |
655 | | eluzle 12604 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (ℤ≥‘0)
→ 0 ≤ (𝐼‘(𝑆‘𝑗))) |
656 | 47, 654, 655 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ≤ (𝐼‘(𝑆‘𝑗))) |
657 | 385 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < 1) |
658 | 651, 652,
656, 657 | addgegt0d 11557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 < ((𝐼‘(𝑆‘𝑗)) + 1)) |
659 | 650, 653,
658 | ltled 11132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1)) |
660 | 659 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1)) |
661 | 651 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) ∈ ℝ) |
662 | | 1red 10985 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 1 ∈
ℝ) |
663 | 392, 662 | resubcld 11412 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑀 − 1) ∈ ℝ) |
664 | 663 | ad2antrr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑀 − 1) ∈ ℝ) |
665 | | 1red 10985 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 1 ∈
ℝ) |
666 | | elfzolt2 13405 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼‘(𝑆‘𝑗)) ∈ (0..^𝑀) → (𝐼‘(𝑆‘𝑗)) < 𝑀) |
667 | 47, 666 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) < 𝑀) |
668 | 43 | elfzelzd 13266 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ∈ ℤ) |
669 | 96 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑀 ∈ ℤ) |
670 | | zltlem1 12382 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼‘(𝑆‘𝑗)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝐼‘(𝑆‘𝑗)) < 𝑀 ↔ (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1))) |
671 | 668, 669,
670 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) < 𝑀 ↔ (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1))) |
672 | 667, 671 | mpbid 231 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1)) |
673 | 672 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) ≤ (𝑀 − 1)) |
674 | | neqne 2952 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
(𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → (𝐼‘(𝑆‘𝑗)) ≠ (𝑀 − 1)) |
675 | 674 | necomd 3000 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
(𝐼‘(𝑆‘𝑗)) = (𝑀 − 1) → (𝑀 − 1) ≠ (𝐼‘(𝑆‘𝑗))) |
676 | 675 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑀 − 1) ≠ (𝐼‘(𝑆‘𝑗))) |
677 | 661, 664,
673, 676 | leneltd 11138 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐼‘(𝑆‘𝑗)) < (𝑀 − 1)) |
678 | 661, 664,
665, 677 | ltadd1dd 11595 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) < ((𝑀 − 1) + 1)) |
679 | 580 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝑀 − 1) + 1) = 𝑀) |
680 | 678, 679 | breqtrd 5101 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀) |
681 | 49 | elfzelzd 13266 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ) |
682 | 681 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ) |
683 | | 0zd 12340 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 0 ∈
ℤ) |
684 | 96 | ad2antrr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → 𝑀 ∈ ℤ) |
685 | | elfzo 13398 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐼‘(𝑆‘𝑗)) + 1) ∈ ℤ ∧ 0 ∈ ℤ
∧ 𝑀 ∈ ℤ)
→ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ↔ (0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀))) |
686 | 682, 683,
684, 685 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ↔ (0 ≤ ((𝐼‘(𝑆‘𝑗)) + 1) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) < 𝑀))) |
687 | 660, 680,
686 | mpbir2and 710 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀)) |
688 | 687 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀)) |
689 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
690 | | fveq2 6783 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = ((𝐼‘(𝑆‘𝑗)) + 1) → (𝑄‘𝑖) = (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
691 | 690 | breq1d 5085 |
. . . . . . . . . . . . 13
⊢ (𝑖 = ((𝐼‘(𝑆‘𝑗)) + 1) → ((𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ↔ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
692 | 691 | elrab 3625 |
. . . . . . . . . . . 12
⊢ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ↔ (((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0..^𝑀) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
693 | 688, 689,
692 | sylanbrc 583 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) |
694 | | suprub 11945 |
. . . . . . . . . . 11
⊢ ((({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ⊆ ℝ ∧ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))} ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑙 ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}𝑙 ≤ 𝑥) ∧ ((𝐼‘(𝑆‘𝑗)) + 1) ∈ {𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
695 | 596, 641,
649, 693, 694 | syl31anc 1372 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < )) |
696 | 62 | eqcomd 2745 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = (𝐼‘(𝑆‘𝑗))) |
697 | 696 | ad2antrr 723 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄‘𝑖) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))}, ℝ, < ) = (𝐼‘(𝑆‘𝑗))) |
698 | 695, 697 | breqtrd 5101 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
699 | 651 | ltp1d 11914 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐼‘(𝑆‘𝑗)) < ((𝐼‘(𝑆‘𝑗)) + 1)) |
700 | 651, 653 | ltnled 11131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐼‘(𝑆‘𝑗)) < ((𝐼‘(𝑆‘𝑗)) + 1) ↔ ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗)))) |
701 | 699, 700 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
702 | 701 | ad2antrr 723 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) → ¬ ((𝐼‘(𝑆‘𝑗)) + 1) ≤ (𝐼‘(𝑆‘𝑗))) |
703 | 698, 702 | pm2.65da 814 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ¬ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗)))) |
704 | 562 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) ∈ ℝ) |
705 | 50 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ) |
706 | 704, 705 | ltnled 11131 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → ((𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ↔ ¬ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))))) |
707 | 703, 706 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
708 | 707 | adantlr 712 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐿‘(𝐸‘(𝑆‘𝑗))) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
709 | 589, 708 | eqbrtrd 5097 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) ∧ ¬ (𝐼‘(𝑆‘𝑗)) = (𝑀 − 1)) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
710 | 588, 709 | pm2.61dan 810 |
. . . 4
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
711 | 2 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑀 ∈ ℕ) |
712 | 1 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑄 ∈ (𝑃‘𝑀)) |
713 | 21 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐶 ∈ ℝ) |
714 | 22 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐷 ∈ ℝ) |
715 | 23 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝐶 < 𝐷) |
716 | 49 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → ((𝐼‘(𝑆‘𝑗)) + 1) ∈ (0...𝑀)) |
717 | | simp2 1136 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → 𝑗 ∈ (0..^𝑁)) |
718 | 42 | leidd 11550 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ≤ (𝑆‘𝑗)) |
719 | | elico2 13152 |
. . . . . . . . 9
⊢ (((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘(𝑗 + 1)) ∈ ℝ*) →
((𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ ((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘𝑗) ≤ (𝑆‘𝑗) ∧ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))))) |
720 | 42, 210, 719 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1))) ↔ ((𝑆‘𝑗) ∈ ℝ ∧ (𝑆‘𝑗) ≤ (𝑆‘𝑗) ∧ (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))))) |
721 | 42, 718, 129, 720 | mpbir3and 1341 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
722 | 721 | 3adant3 1131 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝑆‘𝑗) ∈ ((𝑆‘𝑗)[,)(𝑆‘(𝑗 + 1)))) |
723 | | simp3 1137 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
724 | | eqid 2739 |
. . . . . 6
⊢ ((𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) − ((𝐸‘(𝑆‘𝑗)) − (𝑆‘𝑗))) = ((𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) − ((𝐸‘(𝑆‘𝑗)) − (𝑆‘𝑗))) |
725 | 11, 3, 711, 712, 713, 714, 715, 24, 25, 26, 27, 12, 716, 717, 722, 723, 724 | fourierdlem63 43717 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
726 | 725 | 3adant1r 1176 |
. . . 4
⊢ (((𝜑 ∧ (𝑆‘𝑗) ∈ ℝ) ∧ 𝑗 ∈ (0..^𝑁) ∧ (𝐸‘(𝑆‘𝑗)) < (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
727 | 540, 541,
710, 726 | syl3anc 1370 |
. . 3
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ ¬ (𝐸‘(𝑆‘𝑗)) = 𝐵) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
728 | 539, 727 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1))) |
729 | | ioossioo 13182 |
. 2
⊢ ((((𝑄‘(𝐼‘(𝑆‘𝑗))) ∈ ℝ* ∧ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)) ∈ ℝ*) ∧
((𝑄‘(𝐼‘(𝑆‘𝑗))) ≤ (𝐿‘(𝐸‘(𝑆‘𝑗))) ∧ (𝐸‘(𝑆‘(𝑗 + 1))) ≤ (𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |
730 | 45, 51, 89, 728, 729 | syl22anc 836 |
1
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝐿‘(𝐸‘(𝑆‘𝑗)))(,)(𝐸‘(𝑆‘(𝑗 + 1)))) ⊆ ((𝑄‘(𝐼‘(𝑆‘𝑗)))(,)(𝑄‘((𝐼‘(𝑆‘𝑗)) + 1)))) |