MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcfac Structured version   Visualization version   GIF version

Theorem pcfac 16932
Description: Calculate the prime count of a factorial. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
pcfac ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Distinct variable groups:   𝑃,𝑘   𝑘,𝑁   𝑘,𝑀

Proof of Theorem pcfac
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . . . . 8 (𝑥 = 0 → (ℤ𝑥) = (ℤ‘0))
2 fveq2 6906 . . . . . . . . . 10 (𝑥 = 0 → (!‘𝑥) = (!‘0))
32oveq2d 7446 . . . . . . . . 9 (𝑥 = 0 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘0)))
4 fvoveq1 7453 . . . . . . . . . 10 (𝑥 = 0 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(0 / (𝑃𝑘))))
54sumeq2sdv 15735 . . . . . . . . 9 (𝑥 = 0 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
63, 5eqeq12d 2750 . . . . . . . 8 (𝑥 = 0 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
71, 6raleqbidv 3343 . . . . . . 7 (𝑥 = 0 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘)))))
87imbi2d 340 . . . . . 6 (𝑥 = 0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))))
9 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑛 → (ℤ𝑥) = (ℤ𝑛))
10 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛))
1110oveq2d 7446 . . . . . . . . 9 (𝑥 = 𝑛 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑛)))
12 fvoveq1 7453 . . . . . . . . . 10 (𝑥 = 𝑛 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑛 / (𝑃𝑘))))
1312sumeq2sdv 15735 . . . . . . . . 9 (𝑥 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))
1411, 13eqeq12d 2750 . . . . . . . 8 (𝑥 = 𝑛 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
159, 14raleqbidv 3343 . . . . . . 7 (𝑥 = 𝑛 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
1615imbi2d 340 . . . . . 6 (𝑥 = 𝑛 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))))))
17 fveq2 6906 . . . . . . . 8 (𝑥 = (𝑛 + 1) → (ℤ𝑥) = (ℤ‘(𝑛 + 1)))
18 fveq2 6906 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1)))
1918oveq2d 7446 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘(𝑛 + 1))))
20 fvoveq1 7453 . . . . . . . . . 10 (𝑥 = (𝑛 + 1) → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘((𝑛 + 1) / (𝑃𝑘))))
2120sumeq2sdv 15735 . . . . . . . . 9 (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
2219, 21eqeq12d 2750 . . . . . . . 8 (𝑥 = (𝑛 + 1) → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2317, 22raleqbidv 3343 . . . . . . 7 (𝑥 = (𝑛 + 1) → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
2423imbi2d 340 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
25 fveq2 6906 . . . . . . . 8 (𝑥 = 𝑁 → (ℤ𝑥) = (ℤ𝑁))
26 fveq2 6906 . . . . . . . . . 10 (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁))
2726oveq2d 7446 . . . . . . . . 9 (𝑥 = 𝑁 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑁)))
28 fvoveq1 7453 . . . . . . . . . 10 (𝑥 = 𝑁 → (⌊‘(𝑥 / (𝑃𝑘))) = (⌊‘(𝑁 / (𝑃𝑘))))
2928sumeq2sdv 15735 . . . . . . . . 9 (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
3027, 29eqeq12d 2750 . . . . . . . 8 (𝑥 = 𝑁 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3125, 30raleqbidv 3343 . . . . . . 7 (𝑥 = 𝑁 → (∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘))) ↔ ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
3231imbi2d 340 . . . . . 6 (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))))
33 fzfid 14010 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (1...𝑚) ∈ Fin)
34 sumz 15754 . . . . . . . . . 10 (((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑘 ∈ (1...𝑚)0 = 0)
3534olcs 876 . . . . . . . . 9 ((1...𝑚) ∈ Fin → Σ𝑘 ∈ (1...𝑚)0 = 0)
3633, 35syl 17 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)0 = 0)
37 0nn0 12538 . . . . . . . . . 10 0 ∈ ℕ0
38 elfznn 13589 . . . . . . . . . . . . 13 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ)
3938nnnn0d 12584 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ0)
40 nn0uz 12917 . . . . . . . . . . . 12 0 = (ℤ‘0)
4139, 40eleqtrdi 2848 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘0))
4241adantl 481 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ (ℤ‘0))
43 simpll 767 . . . . . . . . . 10 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
44 pcfaclem 16931 . . . . . . . . . 10 ((0 ∈ ℕ0𝑘 ∈ (ℤ‘0) ∧ 𝑃 ∈ ℙ) → (⌊‘(0 / (𝑃𝑘))) = 0)
4537, 42, 43, 44mp3an2i 1465 . . . . . . . . 9 (((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(0 / (𝑃𝑘))) = 0)
4645sumeq2dv 15734 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑚)0)
47 fac0 14311 . . . . . . . . . . 11 (!‘0) = 1
4847oveq2i 7441 . . . . . . . . . 10 (𝑃 pCnt (!‘0)) = (𝑃 pCnt 1)
49 pc1 16888 . . . . . . . . . 10 (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0)
5048, 49eqtrid 2786 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 pCnt (!‘0)) = 0)
5150adantr 480 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = 0)
5236, 46, 513eqtr4rd 2785 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝑚 ∈ (ℤ‘0)) → (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
5352ralrimiva 3143 . . . . . 6 (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃𝑘))))
54 nn0z 12635 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
5554adantr 480 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → 𝑛 ∈ ℤ)
56 uzid 12890 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ (ℤ𝑛))
57 peano2uz 12940 . . . . . . . . . . 11 (𝑛 ∈ (ℤ𝑛) → (𝑛 + 1) ∈ (ℤ𝑛))
5855, 56, 573syl 18 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (𝑛 + 1) ∈ (ℤ𝑛))
59 uzss 12898 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑛) → (ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛))
60 ssralv 4063 . . . . . . . . . 10 ((ℤ‘(𝑛 + 1)) ⊆ (ℤ𝑛) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
6158, 59, 603syl 18 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
62 oveq1 7437 . . . . . . . . . . 11 ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))))
63 simpll 767 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℕ0)
64 facp1 14313 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6563, 64syl 17 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1)))
6665oveq2d 7446 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (!‘(𝑛 + 1))) = (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))))
67 simplr 769 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℙ)
68 faccl 14318 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
69 nnz 12631 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℤ)
70 nnne0 12297 . . . . . . . . . . . . . . . 16 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ≠ 0)
7169, 70jca 511 . . . . . . . . . . . . . . 15 ((!‘𝑛) ∈ ℕ → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
7263, 68, 713syl 18 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0))
73 nn0p1nn 12562 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ0 → (𝑛 + 1) ∈ ℕ)
74 nnz 12631 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ∈ ℤ)
75 nnne0 12297 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → (𝑛 + 1) ≠ 0)
7674, 75jca 511 . . . . . . . . . . . . . . 15 ((𝑛 + 1) ∈ ℕ → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
7763, 73, 763syl 18 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0))
78 pcmul 16884 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0) ∧ ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0)) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
7967, 72, 77, 78syl3anc 1370 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))))
8066, 79eqtr2d 2775 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (𝑃 pCnt (!‘(𝑛 + 1))))
8163adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℕ0)
8281nn0zd 12636 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℤ)
83 prmnn 16707 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
8483ad2antlr 727 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ ℕ)
85 nnexpcl 14111 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
8684, 39, 85syl2an 596 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑃𝑘) ∈ ℕ)
87 fldivp1 16930 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℤ ∧ (𝑃𝑘) ∈ ℕ) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
8882, 86, 87syl2anc 584 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0))
89 elfzuz 13556 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...𝑚) → 𝑘 ∈ (ℤ‘1))
9063, 73syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ)
9167, 90pccld 16883 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℕ0)
9291nn0zd 12636 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℤ)
93 elfz5 13552 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (ℤ‘1) ∧ (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
9489, 92, 93syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1))))
95 simpllr 776 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ)
9681, 73syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℕ)
9796nnzd 12637 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℤ)
9839adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ0)
99 pcdvdsb 16902 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
10095, 97, 98, 99syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃𝑘) ∥ (𝑛 + 1)))
10194, 100bitr2d 280 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑃𝑘) ∥ (𝑛 + 1) ↔ 𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1)))))
102101ifbid 4553 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → if((𝑃𝑘) ∥ (𝑛 + 1), 1, 0) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
10388, 102eqtrd 2774 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
104103sumeq2dv 15734 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0))
105 fzfid 14010 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...𝑚) ∈ Fin)
10663nn0red 12585 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑛 ∈ ℝ)
107 peano2re 11431 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℝ → (𝑛 + 1) ∈ ℝ)
108106, 107syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℝ)
109108adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℝ)
110109, 86nndivred 12317 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑛 + 1) / (𝑃𝑘)) ∈ ℝ)
111110flcld 13834 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℤ)
112111zcnd 12720 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
113106adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℝ)
114113, 86nndivred 12317 . . . . . . . . . . . . . . . . 17 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 / (𝑃𝑘)) ∈ ℝ)
115114flcld 13834 . . . . . . . . . . . . . . . 16 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℤ)
116115zcnd 12720 . . . . . . . . . . . . . . 15 ((((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
117105, 112, 116fsumsub 15820 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃𝑘))) − (⌊‘(𝑛 / (𝑃𝑘)))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))))
118 fzfi 14009 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ Fin
11991nn0red 12585 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ)
120 eluzelz 12885 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → 𝑚 ∈ ℤ)
121120adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℤ)
122121zred 12719 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ ℝ)
123 prmuz2 16729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
124123ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑃 ∈ (ℤ‘2))
12590nnnn0d 12584 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ0)
126 bernneq3 14266 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ (ℤ‘2) ∧ (𝑛 + 1) ∈ ℕ0) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
127124, 125, 126syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) < (𝑃↑(𝑛 + 1)))
128119, 108letrid 11410 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) ∨ (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
129128ord 864 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1))))
13090nnzd 12637 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℤ)
131 pcdvdsb 16902 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ0) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13267, 130, 125, 131syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1)))
13384, 125nnexpcld 14280 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℕ)
134133nnzd 12637 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℤ)
135 dvdsle 16343 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃↑(𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
136134, 90, 135syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1)))
137133nnred 12278 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℝ)
138137, 108lenltd 11404 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1) ↔ ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
139136, 138sylibd 239 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
140132, 139sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
141129, 140syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1))))
142127, 141mt4d 117 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1))
143 eluzle 12888 . . . . . . . . . . . . . . . . . . . 20 (𝑚 ∈ (ℤ‘(𝑛 + 1)) → (𝑛 + 1) ≤ 𝑚)
144143adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑛 + 1) ≤ 𝑚)
145119, 108, 122, 142, 144letrd 11415 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚)
146 eluz 12889 . . . . . . . . . . . . . . . . . . 19 (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
14792, 121, 146syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚))
148145, 147mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → 𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))))
149 fzss2 13600 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (ℤ‘(𝑃 pCnt (𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
150148, 149syl 17 . . . . . . . . . . . . . . . 16 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚))
151 sumhash 16929 . . . . . . . . . . . . . . . 16 (((1...𝑚) ∈ Fin ∧ (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚)) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1)))))
152118, 150, 151sylancr 587 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1)))))
153 hashfz1 14381 . . . . . . . . . . . . . . . 16 ((𝑃 pCnt (𝑛 + 1)) ∈ ℕ0 → (♯‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
15491, 153syl 17 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (♯‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1)))
155152, 154eqtrd 2774 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (𝑃 pCnt (𝑛 + 1)))
156104, 117, 1553eqtr3d 2782 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)))
157105, 112fsumcl 15765 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) ∈ ℂ)
158105, 116fsumcl 15765 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) ∈ ℂ)
159119recnd 11286 . . . . . . . . . . . . . 14 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℂ)
160157, 158, 159subaddd 11635 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) = (𝑃 pCnt (𝑛 + 1)) ↔ (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
161156, 160mpbid 232 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))
16280, 161eqeq12d 2750 . . . . . . . . . . 11 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → (((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) + (𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
16362, 162imbitrid 244 . . . . . . . . . 10 (((𝑛 ∈ ℕ0𝑃 ∈ ℙ) ∧ 𝑚 ∈ (ℤ‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
164163ralimdva 3164 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
16561, 164syld 47 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑃 ∈ ℙ) → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘)))))
166165ex 412 . . . . . . 7 (𝑛 ∈ ℕ0 → (𝑃 ∈ ℙ → (∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘))) → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
167166a2d 29 . . . . . 6 (𝑛 ∈ ℕ0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃𝑘)))) → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃𝑘))))))
1688, 16, 24, 32, 53, 167nn0ind 12710 . . . . 5 (𝑁 ∈ ℕ0 → (𝑃 ∈ ℙ → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘)))))
169168imp 406 . . . 4 ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → ∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))))
170 oveq2 7438 . . . . . . 7 (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀))
171170sumeq1d 15732 . . . . . 6 (𝑚 = 𝑀 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
172171eqeq2d 2745 . . . . 5 (𝑚 = 𝑀 → ((𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
173172rspcv 3617 . . . 4 (𝑀 ∈ (ℤ𝑁) → (∀𝑚 ∈ (ℤ𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃𝑘))) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
174169, 173syl5 34 . . 3 (𝑀 ∈ (ℤ𝑁) → ((𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘)))))
1751743impib 1115 . 2 ((𝑀 ∈ (ℤ𝑁) ∧ 𝑁 ∈ ℕ0𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
1761753com12 1122 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wss 3962  ifcif 4530   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  cfl 13826  cexp 14098  !cfa 14308  chash 14365  Σcsu 15718  cdvds 16286  cprime 16704   pCnt cpc 16869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-sum 15719  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870
This theorem is referenced by:  pcbc  16933
  Copyright terms: Public domain W3C validator