Step | Hyp | Ref
| Expression |
1 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 0 →
(ℤ≥‘𝑥) =
(ℤ≥‘0)) |
2 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (!‘𝑥) =
(!‘0)) |
3 | 2 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = 0 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘0))) |
4 | | fvoveq1 7298 |
. . . . . . . . . 10
⊢ (𝑥 = 0 →
(⌊‘(𝑥 / (𝑃↑𝑘))) = (⌊‘(0 / (𝑃↑𝑘)))) |
5 | 4 | sumeq2sdv 15416 |
. . . . . . . . 9
⊢ (𝑥 = 0 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘)))) |
6 | 3, 5 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘))))) |
7 | 1, 6 | raleqbidv 3336 |
. . . . . . 7
⊢ (𝑥 = 0 → (∀𝑚 ∈
(ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ ∀𝑚 ∈
(ℤ≥‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘))))) |
8 | 7 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 0 → ((𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘)))))) |
9 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → (ℤ≥‘𝑥) =
(ℤ≥‘𝑛)) |
10 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (!‘𝑥) = (!‘𝑛)) |
11 | 10 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑛))) |
12 | | fvoveq1 7298 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑛 → (⌊‘(𝑥 / (𝑃↑𝑘))) = (⌊‘(𝑛 / (𝑃↑𝑘)))) |
13 | 12 | sumeq2sdv 15416 |
. . . . . . . . 9
⊢ (𝑥 = 𝑛 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘)))) |
14 | 11, 13 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑛 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ (𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))))) |
15 | 9, 14 | raleqbidv 3336 |
. . . . . . 7
⊢ (𝑥 = 𝑛 → (∀𝑚 ∈ (ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ ∀𝑚 ∈ (ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))))) |
16 | 15 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑛 → ((𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘)))))) |
17 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) →
(ℤ≥‘𝑥) = (ℤ≥‘(𝑛 + 1))) |
18 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → (!‘𝑥) = (!‘(𝑛 + 1))) |
19 | 18 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘(𝑛 + 1)))) |
20 | | fvoveq1 7298 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → (⌊‘(𝑥 / (𝑃↑𝑘))) = (⌊‘((𝑛 + 1) / (𝑃↑𝑘)))) |
21 | 20 | sumeq2sdv 15416 |
. . . . . . . . 9
⊢ (𝑥 = (𝑛 + 1) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘)))) |
22 | 19, 21 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = (𝑛 + 1) → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
23 | 17, 22 | raleqbidv 3336 |
. . . . . . 7
⊢ (𝑥 = (𝑛 + 1) → (∀𝑚 ∈ (ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
24 | 23 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = (𝑛 + 1) → ((𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘)))))) |
25 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → (ℤ≥‘𝑥) =
(ℤ≥‘𝑁)) |
26 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (!‘𝑥) = (!‘𝑁)) |
27 | 26 | oveq2d 7291 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → (𝑃 pCnt (!‘𝑥)) = (𝑃 pCnt (!‘𝑁))) |
28 | | fvoveq1 7298 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑁 → (⌊‘(𝑥 / (𝑃↑𝑘))) = (⌊‘(𝑁 / (𝑃↑𝑘)))) |
29 | 28 | sumeq2sdv 15416 |
. . . . . . . . 9
⊢ (𝑥 = 𝑁 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
30 | 27, 29 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 = 𝑁 → ((𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
31 | 25, 30 | raleqbidv 3336 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (∀𝑚 ∈ (ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘))) ↔ ∀𝑚 ∈ (ℤ≥‘𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
32 | 31 | imbi2d 341 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑥)(𝑃 pCnt (!‘𝑥)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑥 / (𝑃↑𝑘)))) ↔ (𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘)))))) |
33 | | fzfid 13693 |
. . . . . . . . 9
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) → (1...𝑚) ∈ Fin) |
34 | | sumz 15434 |
. . . . . . . . . 10
⊢
(((1...𝑚) ⊆
(ℤ≥‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑘 ∈ (1...𝑚)0 = 0) |
35 | 34 | olcs 873 |
. . . . . . . . 9
⊢
((1...𝑚) ∈ Fin
→ Σ𝑘 ∈
(1...𝑚)0 =
0) |
36 | 33, 35 | syl 17 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) → Σ𝑘 ∈ (1...𝑚)0 = 0) |
37 | | 0nn0 12248 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
38 | | elfznn 13285 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ) |
39 | 38 | nnnn0d 12293 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (1...𝑚) → 𝑘 ∈ ℕ0) |
40 | | nn0uz 12620 |
. . . . . . . . . . . 12
⊢
ℕ0 = (ℤ≥‘0) |
41 | 39, 40 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (1...𝑚) → 𝑘 ∈
(ℤ≥‘0)) |
42 | 41 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈
(ℤ≥‘0)) |
43 | | simpll 764 |
. . . . . . . . . 10
⊢ (((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ) |
44 | | pcfaclem 16599 |
. . . . . . . . . 10
⊢ ((0
∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘0)
∧ 𝑃 ∈ ℙ)
→ (⌊‘(0 / (𝑃↑𝑘))) = 0) |
45 | 37, 42, 43, 44 | mp3an2i 1465 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(0 / (𝑃↑𝑘))) = 0) |
46 | 45 | sumeq2dv 15415 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) → Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑚)0) |
47 | | fac0 13990 |
. . . . . . . . . . 11
⊢
(!‘0) = 1 |
48 | 47 | oveq2i 7286 |
. . . . . . . . . 10
⊢ (𝑃 pCnt (!‘0)) = (𝑃 pCnt 1) |
49 | | pc1 16556 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 1) = 0) |
50 | 48, 49 | eqtrid 2790 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (𝑃 pCnt (!‘0)) =
0) |
51 | 50 | adantr 481 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) → (𝑃 pCnt (!‘0)) = 0) |
52 | 36, 46, 51 | 3eqtr4rd 2789 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝑚 ∈
(ℤ≥‘0)) → (𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘)))) |
53 | 52 | ralrimiva 3103 |
. . . . . 6
⊢ (𝑃 ∈ ℙ →
∀𝑚 ∈
(ℤ≥‘0)(𝑃 pCnt (!‘0)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(0 / (𝑃↑𝑘)))) |
54 | | nn0z 12343 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℤ) |
55 | 54 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ 𝑛 ∈
ℤ) |
56 | | uzid 12597 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
(ℤ≥‘𝑛)) |
57 | | peano2uz 12641 |
. . . . . . . . . . 11
⊢ (𝑛 ∈
(ℤ≥‘𝑛) → (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
58 | 55, 56, 57 | 3syl 18 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (𝑛 + 1) ∈
(ℤ≥‘𝑛)) |
59 | | uzss 12605 |
. . . . . . . . . 10
⊢ ((𝑛 + 1) ∈
(ℤ≥‘𝑛) → (ℤ≥‘(𝑛 + 1)) ⊆
(ℤ≥‘𝑛)) |
60 | | ssralv 3987 |
. . . . . . . . . 10
⊢
((ℤ≥‘(𝑛 + 1)) ⊆
(ℤ≥‘𝑛) → (∀𝑚 ∈ (ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))))) |
61 | 58, 59, 60 | 3syl 18 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (∀𝑚 ∈
(ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))))) |
62 | | oveq1 7282 |
. . . . . . . . . . 11
⊢ ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) + (𝑃 pCnt (𝑛 + 1)))) |
63 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑛 ∈ ℕ0) |
64 | | facp1 13992 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (!‘(𝑛 + 1)) =
((!‘𝑛) ·
(𝑛 + 1))) |
65 | 63, 64 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (!‘(𝑛 + 1)) = ((!‘𝑛) · (𝑛 + 1))) |
66 | 65 | oveq2d 7291 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (!‘(𝑛 + 1))) = (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1)))) |
67 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑃 ∈ ℙ) |
68 | | faccl 13997 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (!‘𝑛) ∈
ℕ) |
69 | | nnz 12342 |
. . . . . . . . . . . . . . . 16
⊢
((!‘𝑛) ∈
ℕ → (!‘𝑛)
∈ ℤ) |
70 | | nnne0 12007 |
. . . . . . . . . . . . . . . 16
⊢
((!‘𝑛) ∈
ℕ → (!‘𝑛)
≠ 0) |
71 | 69, 70 | jca 512 |
. . . . . . . . . . . . . . 15
⊢
((!‘𝑛) ∈
ℕ → ((!‘𝑛)
∈ ℤ ∧ (!‘𝑛) ≠ 0)) |
72 | 63, 68, 71 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((!‘𝑛) ∈ ℤ ∧ (!‘𝑛) ≠ 0)) |
73 | | nn0p1nn 12272 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ ℕ0
→ (𝑛 + 1) ∈
ℕ) |
74 | | nnz 12342 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ ℕ →
(𝑛 + 1) ∈
ℤ) |
75 | | nnne0 12007 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 + 1) ∈ ℕ →
(𝑛 + 1) ≠
0) |
76 | 74, 75 | jca 512 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 + 1) ∈ ℕ →
((𝑛 + 1) ∈ ℤ
∧ (𝑛 + 1) ≠
0)) |
77 | 63, 73, 76 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑛 + 1) ∈ ℤ ∧ (𝑛 + 1) ≠ 0)) |
78 | | pcmul 16552 |
. . . . . . . . . . . . . 14
⊢ ((𝑃 ∈ ℙ ∧
((!‘𝑛) ∈ ℤ
∧ (!‘𝑛) ≠ 0)
∧ ((𝑛 + 1) ∈
ℤ ∧ (𝑛 + 1) ≠
0)) → (𝑃 pCnt
((!‘𝑛) ·
(𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1)))) |
79 | 67, 72, 77, 78 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt ((!‘𝑛) · (𝑛 + 1))) = ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1)))) |
80 | 66, 79 | eqtr2d 2779 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (𝑃 pCnt (!‘(𝑛 + 1)))) |
81 | 63 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℕ0) |
82 | 81 | nn0zd 12424 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℤ) |
83 | | prmnn 16379 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
84 | 83 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑃 ∈ ℕ) |
85 | | nnexpcl 13795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0)
→ (𝑃↑𝑘) ∈
ℕ) |
86 | 84, 39, 85 | syl2an 596 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑃↑𝑘) ∈ ℕ) |
87 | | fldivp1 16598 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℤ ∧ (𝑃↑𝑘) ∈ ℕ) →
((⌊‘((𝑛 + 1) /
(𝑃↑𝑘))) − (⌊‘(𝑛 / (𝑃↑𝑘)))) = if((𝑃↑𝑘) ∥ (𝑛 + 1), 1, 0)) |
88 | 82, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − (⌊‘(𝑛 / (𝑃↑𝑘)))) = if((𝑃↑𝑘) ∥ (𝑛 + 1), 1, 0)) |
89 | | elfzuz 13252 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ (1...𝑚) → 𝑘 ∈
(ℤ≥‘1)) |
90 | 63, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℕ) |
91 | 67, 90 | pccld 16551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈
ℕ0) |
92 | 91 | nn0zd 12424 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) |
93 | | elfz5 13248 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈
(ℤ≥‘1) ∧ (𝑃 pCnt (𝑛 + 1)) ∈ ℤ) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1)))) |
94 | 89, 92, 93 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))) ↔ 𝑘 ≤ (𝑃 pCnt (𝑛 + 1)))) |
95 | | simpllr 773 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑃 ∈ ℙ) |
96 | 81, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℕ) |
97 | 96 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℤ) |
98 | 39 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑘 ∈ ℕ0) |
99 | | pcdvdsb 16570 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧ 𝑘 ∈ ℕ0)
→ (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑𝑘) ∥ (𝑛 + 1))) |
100 | 95, 97, 98, 99 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑘 ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑𝑘) ∥ (𝑛 + 1))) |
101 | 94, 100 | bitr2d 279 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑃↑𝑘) ∥ (𝑛 + 1) ↔ 𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))))) |
102 | 101 | ifbid 4482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → if((𝑃↑𝑘) ∥ (𝑛 + 1), 1, 0) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0)) |
103 | 88, 102 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − (⌊‘(𝑛 / (𝑃↑𝑘)))) = if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0)) |
104 | 103 | sumeq2dv 15415 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − (⌊‘(𝑛 / (𝑃↑𝑘)))) = Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0)) |
105 | | fzfid 13693 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (1...𝑚) ∈ Fin) |
106 | 63 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑛 ∈ ℝ) |
107 | | peano2re 11148 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ℝ → (𝑛 + 1) ∈
ℝ) |
108 | 106, 107 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℝ) |
109 | 108 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 + 1) ∈ ℝ) |
110 | 109, 86 | nndivred 12027 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → ((𝑛 + 1) / (𝑃↑𝑘)) ∈ ℝ) |
111 | 110 | flcld 13518 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃↑𝑘))) ∈ ℤ) |
112 | 111 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘((𝑛 + 1) / (𝑃↑𝑘))) ∈ ℂ) |
113 | 106 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → 𝑛 ∈ ℝ) |
114 | 113, 86 | nndivred 12027 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (𝑛 / (𝑃↑𝑘)) ∈ ℝ) |
115 | 114 | flcld 13518 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃↑𝑘))) ∈ ℤ) |
116 | 115 | zcnd 12427 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) ∧ 𝑘 ∈ (1...𝑚)) → (⌊‘(𝑛 / (𝑃↑𝑘))) ∈ ℂ) |
117 | 105, 112,
116 | fsumsub 15500 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)((⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − (⌊‘(𝑛 / (𝑃↑𝑘)))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))))) |
118 | | fzfi 13692 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑚) ∈
Fin |
119 | 91 | nn0red 12294 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℝ) |
120 | | eluzelz 12592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑚 ∈
(ℤ≥‘(𝑛 + 1)) → 𝑚 ∈ ℤ) |
121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑚 ∈ ℤ) |
122 | 121 | zred 12426 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑚 ∈ ℝ) |
123 | | prmuz2 16401 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
(ℤ≥‘2)) |
124 | 123 | ad2antlr 724 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑃 ∈
(ℤ≥‘2)) |
125 | 90 | nnnn0d 12293 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈
ℕ0) |
126 | | bernneq3 13946 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑃 ∈
(ℤ≥‘2) ∧ (𝑛 + 1) ∈ ℕ0) →
(𝑛 + 1) < (𝑃↑(𝑛 + 1))) |
127 | 124, 125,
126 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) < (𝑃↑(𝑛 + 1))) |
128 | 119, 108 | letrid 11127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) ∨ (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)))) |
129 | 128 | ord 861 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → (𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)))) |
130 | 90 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ∈ ℤ) |
131 | | pcdvdsb 16570 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑃 ∈ ℙ ∧ (𝑛 + 1) ∈ ℤ ∧
(𝑛 + 1) ∈
ℕ0) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1))) |
132 | 67, 130, 125, 131 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) ↔ (𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1))) |
133 | 84, 125 | nnexpcld 13960 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℕ) |
134 | 133 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℤ) |
135 | | dvdsle 16019 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑃↑(𝑛 + 1)) ∈ ℤ ∧ (𝑛 + 1) ∈ ℕ) →
((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1))) |
136 | 134, 90, 135 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → (𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1))) |
137 | 133 | nnred 11988 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃↑(𝑛 + 1)) ∈ ℝ) |
138 | 137, 108 | lenltd 11121 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ≤ (𝑛 + 1) ↔ ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1)))) |
139 | 136, 138 | sylibd 238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃↑(𝑛 + 1)) ∥ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1)))) |
140 | 132, 139 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑛 + 1) ≤ (𝑃 pCnt (𝑛 + 1)) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1)))) |
141 | 129, 140 | syld 47 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (¬ (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1) → ¬ (𝑛 + 1) < (𝑃↑(𝑛 + 1)))) |
142 | 127, 141 | mt4d 117 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ (𝑛 + 1)) |
143 | | eluzle 12595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑚 ∈
(ℤ≥‘(𝑛 + 1)) → (𝑛 + 1) ≤ 𝑚) |
144 | 143 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑛 + 1) ≤ 𝑚) |
145 | 119, 108,
122, 142, 144 | letrd 11132 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚) |
146 | | eluz 12596 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑃 pCnt (𝑛 + 1)) ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑚 ∈
(ℤ≥‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚)) |
147 | 92, 121, 146 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑚 ∈ (ℤ≥‘(𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (𝑛 + 1)) ≤ 𝑚)) |
148 | 145, 147 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → 𝑚 ∈ (ℤ≥‘(𝑃 pCnt (𝑛 + 1)))) |
149 | | fzss2 13296 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈
(ℤ≥‘(𝑃 pCnt (𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚)) |
150 | 148, 149 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚)) |
151 | | sumhash 16597 |
. . . . . . . . . . . . . . . 16
⊢
(((1...𝑚) ∈ Fin
∧ (1...(𝑃 pCnt (𝑛 + 1))) ⊆ (1...𝑚)) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1))))) |
152 | 118, 150,
151 | sylancr 587 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (♯‘(1...(𝑃 pCnt (𝑛 + 1))))) |
153 | | hashfz1 14060 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 pCnt (𝑛 + 1)) ∈ ℕ0 →
(♯‘(1...(𝑃 pCnt
(𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1))) |
154 | 91, 153 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (♯‘(1...(𝑃 pCnt (𝑛 + 1)))) = (𝑃 pCnt (𝑛 + 1))) |
155 | 152, 154 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)if(𝑘 ∈ (1...(𝑃 pCnt (𝑛 + 1))), 1, 0) = (𝑃 pCnt (𝑛 + 1))) |
156 | 104, 117,
155 | 3eqtr3d 2786 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘)))) = (𝑃 pCnt (𝑛 + 1))) |
157 | 105, 112 | fsumcl 15445 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))) ∈ ℂ) |
158 | 105, 116 | fsumcl 15445 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) ∈ ℂ) |
159 | 119 | recnd 11003 |
. . . . . . . . . . . . . 14
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (𝑃 pCnt (𝑛 + 1)) ∈ ℂ) |
160 | 157, 158,
159 | subaddd 11350 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))) − Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘)))) = (𝑃 pCnt (𝑛 + 1)) ↔ (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
161 | 156, 160 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) + (𝑃 pCnt (𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘)))) |
162 | 80, 161 | eqeq12d 2754 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → (((𝑃 pCnt (!‘𝑛)) + (𝑃 pCnt (𝑛 + 1))) = (Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) + (𝑃 pCnt (𝑛 + 1))) ↔ (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
163 | 62, 162 | syl5ib 243 |
. . . . . . . . . 10
⊢ (((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
∧ 𝑚 ∈
(ℤ≥‘(𝑛 + 1))) → ((𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → (𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
164 | 163 | ralimdva 3108 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (∀𝑚 ∈
(ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
165 | 61, 164 | syld 47 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ (∀𝑚 ∈
(ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘))))) |
166 | 165 | ex 413 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ0
→ (𝑃 ∈ ℙ
→ (∀𝑚 ∈
(ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘))) → ∀𝑚 ∈ (ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘)))))) |
167 | 166 | a2d 29 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
→ ((𝑃 ∈ ℙ
→ ∀𝑚 ∈
(ℤ≥‘𝑛)(𝑃 pCnt (!‘𝑛)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑛 / (𝑃↑𝑘)))) → (𝑃 ∈ ℙ → ∀𝑚 ∈
(ℤ≥‘(𝑛 + 1))(𝑃 pCnt (!‘(𝑛 + 1))) = Σ𝑘 ∈ (1...𝑚)(⌊‘((𝑛 + 1) / (𝑃↑𝑘)))))) |
168 | 8, 16, 24, 32, 53, 167 | nn0ind 12415 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑃 ∈ ℙ
→ ∀𝑚 ∈
(ℤ≥‘𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
169 | 168 | imp 407 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝑃 ∈ ℙ)
→ ∀𝑚 ∈
(ℤ≥‘𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
170 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (1...𝑚) = (1...𝑀)) |
171 | 170 | sumeq1d 15413 |
. . . . . 6
⊢ (𝑚 = 𝑀 → Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
172 | 171 | eqeq2d 2749 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))) ↔ (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
173 | 172 | rspcv 3557 |
. . . 4
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (∀𝑚 ∈ (ℤ≥‘𝑁)(𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑚)(⌊‘(𝑁 / (𝑃↑𝑘))) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
174 | 169, 173 | syl5 34 |
. . 3
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → ((𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘))))) |
175 | 174 | 3impib 1115 |
. 2
⊢ ((𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑁 ∈ ℕ0 ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) |
176 | 175 | 3com12 1122 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝑀 ∈
(ℤ≥‘𝑁) ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt (!‘𝑁)) = Σ𝑘 ∈ (1...𝑀)(⌊‘(𝑁 / (𝑃↑𝑘)))) |