![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gchinf | Structured version Visualization version GIF version |
Description: An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015.) |
Ref | Expression |
---|---|
gchinf | ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gchdju1 10518 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ⊔ 1o) ≈ 𝐴) | |
2 | 1 | ensymd 8871 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → 𝐴 ≈ (𝐴 ⊔ 1o)) |
3 | isfin4-2 10176 | . . . 4 ⊢ (𝐴 ∈ GCH → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴)) | |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴)) |
5 | isfin4p1 10177 | . . . 4 ⊢ (𝐴 ∈ FinIV ↔ 𝐴 ≺ (𝐴 ⊔ 1o)) | |
6 | sdomnen 8847 | . . . 4 ⊢ (𝐴 ≺ (𝐴 ⊔ 1o) → ¬ 𝐴 ≈ (𝐴 ⊔ 1o)) | |
7 | 5, 6 | sylbi 216 | . . 3 ⊢ (𝐴 ∈ FinIV → ¬ 𝐴 ≈ (𝐴 ⊔ 1o)) |
8 | 4, 7 | syl6bir 254 | . 2 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → (¬ ω ≼ 𝐴 → ¬ 𝐴 ≈ (𝐴 ⊔ 1o))) |
9 | 2, 8 | mt4d 117 | 1 ⊢ ((𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2106 class class class wbr 5097 ωcom 7785 1oc1o 8365 ≈ cen 8806 ≼ cdom 8807 ≺ csdm 8808 Fincfn 8809 ⊔ cdju 9760 FinIVcfin4 10142 GCHcgch 10482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-oi 9372 df-dju 9763 df-card 9801 df-fin4 10149 df-gch 10483 |
This theorem is referenced by: gchdjuidm 10530 gchxpidm 10531 gchina 10561 |
Copyright terms: Public domain | W3C validator |