Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fltne | Structured version Visualization version GIF version |
Description: If a counterexample to FLT exists, its addends are not equal. (Contributed by SN, 1-Jun-2023.) |
Ref | Expression |
---|---|
fltne.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
fltne.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
fltne.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
fltne.n | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) |
fltne.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
fltne | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2prm 16274 | . . . . 5 ⊢ 2 ∈ ℙ | |
2 | fltne.n | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘2)) | |
3 | rtprmirr 40084 | . . . . 5 ⊢ ((2 ∈ ℙ ∧ 𝑁 ∈ (ℤ≥‘2)) → (2↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) | |
4 | 1, 2, 3 | sylancr 590 | . . . 4 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ∈ (ℝ ∖ ℚ)) |
5 | 4 | eldifbd 3894 | . . 3 ⊢ (𝜑 → ¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ) |
6 | fltne.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
7 | 6 | nnzd 12306 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℤ) |
8 | fltne.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
9 | znq 12573 | . . . . . 6 ⊢ ((𝐶 ∈ ℤ ∧ 𝐴 ∈ ℕ) → (𝐶 / 𝐴) ∈ ℚ) | |
10 | 7, 8, 9 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → (𝐶 / 𝐴) ∈ ℚ) |
11 | eleq1a 2834 | . . . . 5 ⊢ ((𝐶 / 𝐴) ∈ ℚ → ((2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴) → (2↑𝑐(1 / 𝑁)) ∈ ℚ)) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → ((2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴) → (2↑𝑐(1 / 𝑁)) ∈ ℚ)) |
13 | 12 | necon3bd 2955 | . . 3 ⊢ (𝜑 → (¬ (2↑𝑐(1 / 𝑁)) ∈ ℚ → (2↑𝑐(1 / 𝑁)) ≠ (𝐶 / 𝐴))) |
14 | 5, 13 | mpd 15 | . 2 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ≠ (𝐶 / 𝐴)) |
15 | 2rp 12616 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
16 | 15 | a1i 11 | . . . . 5 ⊢ (𝜑 → 2 ∈ ℝ+) |
17 | eluz2nn 12505 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
19 | 18 | nnrecred 11906 | . . . . 5 ⊢ (𝜑 → (1 / 𝑁) ∈ ℝ) |
20 | 16, 19 | rpcxpcld 25644 | . . . 4 ⊢ (𝜑 → (2↑𝑐(1 / 𝑁)) ∈ ℝ+) |
21 | 20 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (2↑𝑐(1 / 𝑁)) ∈ ℝ+) |
22 | 6 | nnrpd 12651 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
23 | 8 | nnrpd 12651 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
24 | 22, 23 | rpdivcld 12670 | . . . 4 ⊢ (𝜑 → (𝐶 / 𝐴) ∈ ℝ+) |
25 | 24 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐶 / 𝐴) ∈ ℝ+) |
26 | 18 | adantr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝑁 ∈ ℕ) |
27 | 18 | nnnn0d 12175 | . . . . . . . 8 ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
28 | 8, 27 | nnexpcld 13837 | . . . . . . 7 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℕ) |
29 | 28 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ∈ ℕ) |
30 | 29 | nncnd 11871 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ∈ ℂ) |
31 | 2cnd 11933 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 2 ∈ ℂ) | |
32 | 29 | nnne0d 11905 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) ≠ 0) |
33 | 28 | nncnd 11871 | . . . . . . . 8 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
34 | 33 | times2d 12099 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑𝑁) · 2) = ((𝐴↑𝑁) + (𝐴↑𝑁))) |
35 | 34 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) · 2) = ((𝐴↑𝑁) + (𝐴↑𝑁))) |
36 | simpr 488 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
37 | 36 | oveq1d 7247 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐴↑𝑁) = (𝐵↑𝑁)) |
38 | 37 | oveq2d 7248 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) + (𝐴↑𝑁)) = ((𝐴↑𝑁) + (𝐵↑𝑁))) |
39 | fltne.1 | . . . . . . 7 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
40 | 39 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
41 | 35, 38, 40 | 3eqtrd 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐴↑𝑁) · 2) = (𝐶↑𝑁)) |
42 | 30, 31, 32, 41 | mvllmuld 11689 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 2 = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
43 | 2cn 11930 | . . . . . 6 ⊢ 2 ∈ ℂ | |
44 | cxproot 25602 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) | |
45 | 43, 18, 44 | sylancr 590 | . . . . 5 ⊢ (𝜑 → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) |
46 | 45 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((2↑𝑐(1 / 𝑁))↑𝑁) = 2) |
47 | 6 | nncnd 11871 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
48 | 8 | nncnd 11871 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
49 | 8 | nnne0d 11905 | . . . . . 6 ⊢ (𝜑 → 𝐴 ≠ 0) |
50 | 47, 48, 49, 27 | expdivd 13755 | . . . . 5 ⊢ (𝜑 → ((𝐶 / 𝐴)↑𝑁) = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
51 | 50 | adantr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((𝐶 / 𝐴)↑𝑁) = ((𝐶↑𝑁) / (𝐴↑𝑁))) |
52 | 42, 46, 51 | 3eqtr4d 2788 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ((2↑𝑐(1 / 𝑁))↑𝑁) = ((𝐶 / 𝐴)↑𝑁)) |
53 | 21, 25, 26, 52 | exp11nnd 40061 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (2↑𝑐(1 / 𝑁)) = (𝐶 / 𝐴)) |
54 | 14, 53 | mteqand 3046 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ∖ cdif 3878 ‘cfv 6398 (class class class)co 7232 ℂcc 10752 ℝcr 10753 1c1 10755 + caddc 10757 · cmul 10759 / cdiv 11514 ℕcn 11855 2c2 11910 ℤcz 12201 ℤ≥cuz 12463 ℚcq 12569 ℝ+crp 12611 ↑cexp 13660 ℙcprime 16253 ↑𝑐ccxp 25468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-inf2 9281 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-int 4875 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-se 5525 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-isom 6407 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-of 7488 df-om 7664 df-1st 7780 df-2nd 7781 df-supp 7925 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-2o 8224 df-er 8412 df-map 8531 df-pm 8532 df-ixp 8600 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-fsupp 9011 df-fi 9052 df-sup 9083 df-inf 9084 df-oi 9151 df-card 9580 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-q 12570 df-rp 12612 df-xneg 12729 df-xadd 12730 df-xmul 12731 df-ioo 12964 df-ioc 12965 df-ico 12966 df-icc 12967 df-fz 13121 df-fzo 13264 df-fl 13392 df-mod 13468 df-seq 13600 df-exp 13661 df-fac 13865 df-bc 13894 df-hash 13922 df-shft 14655 df-cj 14687 df-re 14688 df-im 14689 df-sqrt 14823 df-abs 14824 df-limsup 15057 df-clim 15074 df-rlim 15075 df-sum 15275 df-ef 15654 df-sin 15656 df-cos 15657 df-pi 15659 df-dvds 15841 df-gcd 16079 df-prm 16254 df-numer 16316 df-denom 16317 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-starv 16842 df-sca 16843 df-vsca 16844 df-ip 16845 df-tset 16846 df-ple 16847 df-ds 16849 df-unif 16850 df-hom 16851 df-cco 16852 df-rest 16952 df-topn 16953 df-0g 16971 df-gsum 16972 df-topgen 16973 df-pt 16974 df-prds 16977 df-xrs 17032 df-qtop 17037 df-imas 17038 df-xps 17040 df-mre 17114 df-mrc 17115 df-acs 17117 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-submnd 18244 df-mulg 18514 df-cntz 18736 df-cmn 19197 df-psmet 20380 df-xmet 20381 df-met 20382 df-bl 20383 df-mopn 20384 df-fbas 20385 df-fg 20386 df-cnfld 20389 df-top 21815 df-topon 21832 df-topsp 21854 df-bases 21867 df-cld 21940 df-ntr 21941 df-cls 21942 df-nei 22019 df-lp 22057 df-perf 22058 df-cn 22148 df-cnp 22149 df-haus 22236 df-tx 22483 df-hmeo 22676 df-fil 22767 df-fm 22859 df-flim 22860 df-flf 22861 df-xms 23242 df-ms 23243 df-tms 23244 df-cncf 23799 df-limc 24787 df-dv 24788 df-log 25469 df-cxp 25470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |