MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadrhmcl Structured version   Visualization version   GIF version

Theorem imadrhmcl 20712
Description: The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.)
Hypotheses
Ref Expression
imadrhmcl.r 𝑅 = (𝑁s (𝐹𝑆))
imadrhmcl.0 0 = (0g𝑁)
imadrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imadrhmcl.s (𝜑𝑆 ∈ (SubDRing‘𝑀))
imadrhmcl.1 (𝜑 → ran 𝐹 ≠ { 0 })
Assertion
Ref Expression
imadrhmcl (𝜑𝑅 ∈ DivRing)

Proof of Theorem imadrhmcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imadrhmcl.s . . . . 5 (𝜑𝑆 ∈ (SubDRing‘𝑀))
3 sdrgsubrg 20706 . . . . 5 (𝑆 ∈ (SubDRing‘𝑀) → 𝑆 ∈ (SubRing‘𝑀))
42, 3syl 17 . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
5 rhmima 20519 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
61, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
7 imadrhmcl.r . . . 4 𝑅 = (𝑁s (𝐹𝑆))
87subrgring 20489 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝑅 ∈ Ring)
96, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2731 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
1210, 11unitss 20294 . . . . 5 (Unit‘𝑅) ⊆ (Base‘𝑅)
1312a1i 11 . . . 4 (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅))
14 imadrhmcl.1 . . . . . 6 (𝜑 → ran 𝐹 ≠ { 0 })
15 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
16 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
1715, 16rhmf 20402 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
181, 17syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
20 rhmrcl2 20395 . . . . . . . . . . . 12 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
211, 20syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ Ring)
22 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (1r𝑅) = (0g𝑅))
23 eqid 2731 . . . . . . . . . . . . . . 15 (1r𝑁) = (1r𝑁)
247, 23subrg1 20497 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ (SubRing‘𝑁) → (1r𝑁) = (1r𝑅))
256, 24syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑁) = (1r𝑅))
2625adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (1r𝑁) = (1r𝑅))
27 imadrhmcl.0 . . . . . . . . . . . . . . 15 0 = (0g𝑁)
287, 27subrg0 20494 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 0 = (0g𝑅))
296, 28syl 17 . . . . . . . . . . . . 13 (𝜑0 = (0g𝑅))
3029adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 0 = (0g𝑅))
3122, 26, 303eqtr4rd 2777 . . . . . . . . . . 11 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 0 = (1r𝑁))
3216, 27, 2301eq0ring 20445 . . . . . . . . . . 11 ((𝑁 ∈ Ring ∧ 0 = (1r𝑁)) → (Base‘𝑁) = { 0 })
3321, 31, 32syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (Base‘𝑁) = { 0 })
3433feq3d 6636 . . . . . . . . 9 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (𝐹:(Base‘𝑀)⟶(Base‘𝑁) ↔ 𝐹:(Base‘𝑀)⟶{ 0 }))
3519, 34mpbid 232 . . . . . . . 8 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹:(Base‘𝑀)⟶{ 0 })
3627fvexi 6836 . . . . . . . . 9 0 ∈ V
3736fconst2 7139 . . . . . . . 8 (𝐹:(Base‘𝑀)⟶{ 0 } ↔ 𝐹 = ((Base‘𝑀) × { 0 }))
3835, 37sylib 218 . . . . . . 7 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹 = ((Base‘𝑀) × { 0 }))
3918ffnd 6652 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝑀))
40 sdrgrcl 20704 . . . . . . . . . . . . 13 (𝑆 ∈ (SubDRing‘𝑀) → 𝑀 ∈ DivRing)
412, 40syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ DivRing)
4241drngringd 20652 . . . . . . . . . . 11 (𝜑𝑀 ∈ Ring)
43 eqid 2731 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
4415, 43ring0cl 20185 . . . . . . . . . . 11 (𝑀 ∈ Ring → (0g𝑀) ∈ (Base‘𝑀))
4542, 44syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑀) ∈ (Base‘𝑀))
4645ne0d 4289 . . . . . . . . 9 (𝜑 → (Base‘𝑀) ≠ ∅)
47 fconst5 7140 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑀) ∧ (Base‘𝑀) ≠ ∅) → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
4839, 46, 47syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
4948adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
5038, 49mpbid 232 . . . . . 6 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → ran 𝐹 = { 0 })
5114, 50mteqand 3019 . . . . 5 (𝜑 → (1r𝑅) ≠ (0g𝑅))
52 eqid 2731 . . . . . . . 8 (0g𝑅) = (0g𝑅)
53 eqid 2731 . . . . . . . 8 (1r𝑅) = (1r𝑅)
5411, 52, 530unit 20314 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
559, 54syl 17 . . . . . 6 (𝜑 → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
5655necon3bbid 2965 . . . . 5 (𝜑 → (¬ (0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) ≠ (0g𝑅)))
5751, 56mpbird 257 . . . 4 (𝜑 → ¬ (0g𝑅) ∈ (Unit‘𝑅))
58 ssdifsn 4737 . . . 4 ((Unit‘𝑅) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ ((Unit‘𝑅) ⊆ (Base‘𝑅) ∧ ¬ (0g𝑅) ∈ (Unit‘𝑅)))
5913, 57, 58sylanbrc 583 . . 3 (𝜑 → (Unit‘𝑅) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6039fnfund 6582 . . . . 5 (𝜑 → Fun 𝐹)
617ressbasss2 17152 . . . . . 6 (Base‘𝑅) ⊆ (𝐹𝑆)
62 eldifi 4078 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ∈ (Base‘𝑅))
6361, 62sselid 3927 . . . . 5 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝐹𝑆))
64 fvelima 6887 . . . . 5 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
6560, 63, 64syl2an 596 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
66 simprr 772 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑎) = 𝑥)
67 simprl 770 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎𝑆)
6867fvresd 6842 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑆)‘𝑎) = (𝐹𝑎))
69 eqid 2731 . . . . . . . . . . 11 (𝑀s 𝑆) = (𝑀s 𝑆)
7069resrhm 20516 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁))
711, 4, 70syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁))
72 df-ima 5627 . . . . . . . . . . 11 (𝐹𝑆) = ran (𝐹𝑆)
73 eqimss2 3989 . . . . . . . . . . 11 ((𝐹𝑆) = ran (𝐹𝑆) → ran (𝐹𝑆) ⊆ (𝐹𝑆))
7472, 73mp1i 13 . . . . . . . . . 10 (𝜑 → ran (𝐹𝑆) ⊆ (𝐹𝑆))
757resrhm2b 20517 . . . . . . . . . 10 (((𝐹𝑆) ∈ (SubRing‘𝑁) ∧ ran (𝐹𝑆) ⊆ (𝐹𝑆)) → ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁) ↔ (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅)))
766, 74, 75syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁) ↔ (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅)))
7771, 76mpbid 232 . . . . . . . 8 (𝜑 → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅))
7877ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅))
79 eldifsni 4739 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
8079ad2antlr 727 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑥 ≠ (0g𝑅))
8168adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = (𝐹𝑎))
82 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → 𝑎 = (0g𝑀))
8382fveq2d 6826 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = ((𝐹𝑆)‘(0g𝑀)))
8469, 43subrg0 20494 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘𝑀) → (0g𝑀) = (0g‘(𝑀s 𝑆)))
854, 84syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑀) = (0g‘(𝑀s 𝑆)))
8685fveq2d 6826 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑆)‘(0g𝑀)) = ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))))
87 rhmghm 20401 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅) → (𝐹𝑆) ∈ ((𝑀s 𝑆) GrpHom 𝑅))
88 eqid 2731 . . . . . . . . . . . . . . 15 (0g‘(𝑀s 𝑆)) = (0g‘(𝑀s 𝑆))
8988, 52ghmid 19134 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ ((𝑀s 𝑆) GrpHom 𝑅) → ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))) = (0g𝑅))
9077, 87, 893syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))) = (0g𝑅))
9186, 90eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑆)‘(0g𝑀)) = (0g𝑅))
9291ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘(0g𝑀)) = (0g𝑅))
9383, 92eqtrd 2766 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = (0g𝑅))
94 simplrr 777 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → (𝐹𝑎) = 𝑥)
9581, 93, 943eqtr3rd 2775 . . . . . . . . 9 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → 𝑥 = (0g𝑅))
9680, 95mteqand 3019 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎 ≠ (0g𝑀))
972ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑆 ∈ (SubDRing‘𝑀))
98 eqid 2731 . . . . . . . . . 10 (Unit‘(𝑀s 𝑆)) = (Unit‘(𝑀s 𝑆))
9969, 43, 98sdrgunit 20711 . . . . . . . . 9 (𝑆 ∈ (SubDRing‘𝑀) → (𝑎 ∈ (Unit‘(𝑀s 𝑆)) ↔ (𝑎𝑆𝑎 ≠ (0g𝑀))))
10097, 99syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑎 ∈ (Unit‘(𝑀s 𝑆)) ↔ (𝑎𝑆𝑎 ≠ (0g𝑀))))
10167, 96, 100mpbir2and 713 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎 ∈ (Unit‘(𝑀s 𝑆)))
102 elrhmunit 20425 . . . . . . 7 (((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅) ∧ 𝑎 ∈ (Unit‘(𝑀s 𝑆))) → ((𝐹𝑆)‘𝑎) ∈ (Unit‘𝑅))
10378, 101, 102syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑆)‘𝑎) ∈ (Unit‘𝑅))
10468, 103eqeltrrd 2832 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑎) ∈ (Unit‘𝑅))
10566, 104eqeltrrd 2832 . . . 4 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑥 ∈ (Unit‘𝑅))
10665, 105rexlimddv 3139 . . 3 ((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
10759, 106eqelssd 3951 . 2 (𝜑 → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
10810, 11, 52isdrng 20648 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
1099, 107, 108sylanbrc 583 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3894  wss 3897  c0 4280  {csn 4573   × cxp 5612  ran crn 5615  cres 5616  cima 5617  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  0gc0g 17343   GrpHom cghm 19124  1rcur 20099  Ringcrg 20151  Unitcui 20273   RingHom crh 20387  SubRingcsubrg 20484  DivRingcdr 20644  SubDRingcsdrg 20701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-subg 19036  df-ghm 19125  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-rhm 20390  df-subrng 20461  df-subrg 20485  df-drng 20646  df-sdrg 20702
This theorem is referenced by:  rndrhmcl  33262  ricdrng1  42620
  Copyright terms: Public domain W3C validator