Step | Hyp | Ref
| Expression |
1 | | imadrhmcl.h |
. . . 4
β’ (π β πΉ β (π RingHom π)) |
2 | | imadrhmcl.s |
. . . . 5
β’ (π β π β (SubDRingβπ)) |
3 | | sdrgsubrg 20399 |
. . . . 5
β’ (π β (SubDRingβπ) β π β (SubRingβπ)) |
4 | 2, 3 | syl 17 |
. . . 4
β’ (π β π β (SubRingβπ)) |
5 | | rhmima 20388 |
. . . 4
β’ ((πΉ β (π RingHom π) β§ π β (SubRingβπ)) β (πΉ β π) β (SubRingβπ)) |
6 | 1, 4, 5 | syl2anc 584 |
. . 3
β’ (π β (πΉ β π) β (SubRingβπ)) |
7 | | imadrhmcl.r |
. . . 4
β’ π
= (π βΎs (πΉ β π)) |
8 | 7 | subrgring 20358 |
. . 3
β’ ((πΉ β π) β (SubRingβπ) β π
β Ring) |
9 | 6, 8 | syl 17 |
. 2
β’ (π β π
β Ring) |
10 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
11 | | eqid 2732 |
. . . . . 6
β’
(Unitβπ
) =
(Unitβπ
) |
12 | 10, 11 | unitss 20182 |
. . . . 5
β’
(Unitβπ
)
β (Baseβπ
) |
13 | 12 | a1i 11 |
. . . 4
β’ (π β (Unitβπ
) β (Baseβπ
)) |
14 | | imadrhmcl.1 |
. . . . . 6
β’ (π β ran πΉ β { 0 }) |
15 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ) =
(Baseβπ) |
16 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Baseβπ) =
(Baseβπ) |
17 | 15, 16 | rhmf 20255 |
. . . . . . . . . . 11
β’ (πΉ β (π RingHom π) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
18 | 1, 17 | syl 17 |
. . . . . . . . . 10
β’ (π β πΉ:(Baseβπ)βΆ(Baseβπ)) |
19 | 18 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ (1rβπ
) = (0gβπ
)) β πΉ:(Baseβπ)βΆ(Baseβπ)) |
20 | | rhmrcl2 20248 |
. . . . . . . . . . . 12
β’ (πΉ β (π RingHom π) β π β Ring) |
21 | 1, 20 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β Ring) |
22 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π β§ (1rβπ
) = (0gβπ
)) β
(1rβπ
) =
(0gβπ
)) |
23 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(1rβπ) = (1rβπ) |
24 | 7, 23 | subrg1 20365 |
. . . . . . . . . . . . . 14
β’ ((πΉ β π) β (SubRingβπ) β (1rβπ) = (1rβπ
)) |
25 | 6, 24 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β (1rβπ) = (1rβπ
)) |
26 | 25 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ (1rβπ
) = (0gβπ
)) β
(1rβπ) =
(1rβπ
)) |
27 | | imadrhmcl.0 |
. . . . . . . . . . . . . . 15
β’ 0 =
(0gβπ) |
28 | 7, 27 | subrg0 20362 |
. . . . . . . . . . . . . 14
β’ ((πΉ β π) β (SubRingβπ) β 0 =
(0gβπ
)) |
29 | 6, 28 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β 0 =
(0gβπ
)) |
30 | 29 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ (1rβπ
) = (0gβπ
)) β 0 =
(0gβπ
)) |
31 | 22, 26, 30 | 3eqtr4rd 2783 |
. . . . . . . . . . 11
β’ ((π β§ (1rβπ
) = (0gβπ
)) β 0 =
(1rβπ)) |
32 | 16, 27, 23 | 01eq0ring 20297 |
. . . . . . . . . . 11
β’ ((π β Ring β§ 0 =
(1rβπ))
β (Baseβπ) = {
0
}) |
33 | 21, 31, 32 | syl2an2r 683 |
. . . . . . . . . 10
β’ ((π β§ (1rβπ
) = (0gβπ
)) β (Baseβπ) = { 0 }) |
34 | 33 | feq3d 6701 |
. . . . . . . . 9
β’ ((π β§ (1rβπ
) = (0gβπ
)) β (πΉ:(Baseβπ)βΆ(Baseβπ) β πΉ:(Baseβπ)βΆ{ 0 })) |
35 | 19, 34 | mpbid 231 |
. . . . . . . 8
β’ ((π β§ (1rβπ
) = (0gβπ
)) β πΉ:(Baseβπ)βΆ{ 0 }) |
36 | 27 | fvexi 6902 |
. . . . . . . . 9
β’ 0 β
V |
37 | 36 | fconst2 7202 |
. . . . . . . 8
β’ (πΉ:(Baseβπ)βΆ{ 0 } β πΉ = ((Baseβπ) Γ { 0 })) |
38 | 35, 37 | sylib 217 |
. . . . . . 7
β’ ((π β§ (1rβπ
) = (0gβπ
)) β πΉ = ((Baseβπ) Γ { 0 })) |
39 | 18 | ffnd 6715 |
. . . . . . . . 9
β’ (π β πΉ Fn (Baseβπ)) |
40 | | sdrgrcl 20397 |
. . . . . . . . . . . . 13
β’ (π β (SubDRingβπ) β π β DivRing) |
41 | 2, 40 | syl 17 |
. . . . . . . . . . . 12
β’ (π β π β DivRing) |
42 | 41 | drngringd 20315 |
. . . . . . . . . . 11
β’ (π β π β Ring) |
43 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(0gβπ) = (0gβπ) |
44 | 15, 43 | ring0cl 20077 |
. . . . . . . . . . 11
β’ (π β Ring β
(0gβπ)
β (Baseβπ)) |
45 | 42, 44 | syl 17 |
. . . . . . . . . 10
β’ (π β (0gβπ) β (Baseβπ)) |
46 | 45 | ne0d 4334 |
. . . . . . . . 9
β’ (π β (Baseβπ) β β
) |
47 | | fconst5 7203 |
. . . . . . . . 9
β’ ((πΉ Fn (Baseβπ) β§ (Baseβπ) β β
) β (πΉ = ((Baseβπ) Γ { 0 }) β ran πΉ = { 0 })) |
48 | 39, 46, 47 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πΉ = ((Baseβπ) Γ { 0 }) β ran πΉ = { 0 })) |
49 | 48 | adantr 481 |
. . . . . . 7
β’ ((π β§ (1rβπ
) = (0gβπ
)) β (πΉ = ((Baseβπ) Γ { 0 }) β ran πΉ = { 0 })) |
50 | 38, 49 | mpbid 231 |
. . . . . 6
β’ ((π β§ (1rβπ
) = (0gβπ
)) β ran πΉ = { 0 }) |
51 | 14, 50 | mteqand 3033 |
. . . . 5
β’ (π β (1rβπ
) β
(0gβπ
)) |
52 | | eqid 2732 |
. . . . . . . 8
β’
(0gβπ
) = (0gβπ
) |
53 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
54 | 11, 52, 53 | 0unit 20202 |
. . . . . . 7
β’ (π
β Ring β
((0gβπ
)
β (Unitβπ
)
β (1rβπ
) = (0gβπ
))) |
55 | 9, 54 | syl 17 |
. . . . . 6
β’ (π β
((0gβπ
)
β (Unitβπ
)
β (1rβπ
) = (0gβπ
))) |
56 | 55 | necon3bbid 2978 |
. . . . 5
β’ (π β (Β¬
(0gβπ
)
β (Unitβπ
)
β (1rβπ
) β (0gβπ
))) |
57 | 51, 56 | mpbird 256 |
. . . 4
β’ (π β Β¬
(0gβπ
)
β (Unitβπ
)) |
58 | | ssdifsn 4790 |
. . . 4
β’
((Unitβπ
)
β ((Baseβπ
)
β {(0gβπ
)}) β ((Unitβπ
) β (Baseβπ
) β§ Β¬ (0gβπ
) β (Unitβπ
))) |
59 | 13, 57, 58 | sylanbrc 583 |
. . 3
β’ (π β (Unitβπ
) β ((Baseβπ
) β
{(0gβπ
)})) |
60 | 39 | fnfund 6647 |
. . . . 5
β’ (π β Fun πΉ) |
61 | 7 | ressbasss2 17181 |
. . . . . 6
β’
(Baseβπ
)
β (πΉ β π) |
62 | | eldifi 4125 |
. . . . . 6
β’ (π₯ β ((Baseβπ
) β
{(0gβπ
)})
β π₯ β
(Baseβπ
)) |
63 | 61, 62 | sselid 3979 |
. . . . 5
β’ (π₯ β ((Baseβπ
) β
{(0gβπ
)})
β π₯ β (πΉ β π)) |
64 | | fvelima 6954 |
. . . . 5
β’ ((Fun
πΉ β§ π₯ β (πΉ β π)) β βπ β π (πΉβπ) = π₯) |
65 | 60, 63, 64 | syl2an 596 |
. . . 4
β’ ((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β βπ β π (πΉβπ) = π₯) |
66 | | simprr 771 |
. . . . 5
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β (πΉβπ) = π₯) |
67 | | simprl 769 |
. . . . . . 7
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π β π) |
68 | 67 | fvresd 6908 |
. . . . . 6
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β ((πΉ βΎ π)βπ) = (πΉβπ)) |
69 | | eqid 2732 |
. . . . . . . . . . 11
β’ (π βΎs π) = (π βΎs π) |
70 | 69 | resrhm 20385 |
. . . . . . . . . 10
β’ ((πΉ β (π RingHom π) β§ π β (SubRingβπ)) β (πΉ βΎ π) β ((π βΎs π) RingHom π)) |
71 | 1, 4, 70 | syl2anc 584 |
. . . . . . . . 9
β’ (π β (πΉ βΎ π) β ((π βΎs π) RingHom π)) |
72 | | df-ima 5688 |
. . . . . . . . . . 11
β’ (πΉ β π) = ran (πΉ βΎ π) |
73 | | eqimss2 4040 |
. . . . . . . . . . 11
β’ ((πΉ β π) = ran (πΉ βΎ π) β ran (πΉ βΎ π) β (πΉ β π)) |
74 | 72, 73 | mp1i 13 |
. . . . . . . . . 10
β’ (π β ran (πΉ βΎ π) β (πΉ β π)) |
75 | 7 | resrhm2b 20386 |
. . . . . . . . . 10
β’ (((πΉ β π) β (SubRingβπ) β§ ran (πΉ βΎ π) β (πΉ β π)) β ((πΉ βΎ π) β ((π βΎs π) RingHom π) β (πΉ βΎ π) β ((π βΎs π) RingHom π
))) |
76 | 6, 74, 75 | syl2anc 584 |
. . . . . . . . 9
β’ (π β ((πΉ βΎ π) β ((π βΎs π) RingHom π) β (πΉ βΎ π) β ((π βΎs π) RingHom π
))) |
77 | 71, 76 | mpbid 231 |
. . . . . . . 8
β’ (π β (πΉ βΎ π) β ((π βΎs π) RingHom π
)) |
78 | 77 | ad2antrr 724 |
. . . . . . 7
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β (πΉ βΎ π) β ((π βΎs π) RingHom π
)) |
79 | | eldifsni 4792 |
. . . . . . . . . 10
β’ (π₯ β ((Baseβπ
) β
{(0gβπ
)})
β π₯ β
(0gβπ
)) |
80 | 79 | ad2antlr 725 |
. . . . . . . . 9
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π₯ β (0gβπ
)) |
81 | 68 | adantr 481 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β ((πΉ βΎ π)βπ) = (πΉβπ)) |
82 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β π = (0gβπ)) |
83 | 82 | fveq2d 6892 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β ((πΉ βΎ π)βπ) = ((πΉ βΎ π)β(0gβπ))) |
84 | 69, 43 | subrg0 20362 |
. . . . . . . . . . . . . . 15
β’ (π β (SubRingβπ) β
(0gβπ) =
(0gβ(π
βΎs π))) |
85 | 4, 84 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (0gβπ) = (0gβ(π βΎs π))) |
86 | 85 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π β ((πΉ βΎ π)β(0gβπ)) = ((πΉ βΎ π)β(0gβ(π βΎs π)))) |
87 | | rhmghm 20254 |
. . . . . . . . . . . . . 14
β’ ((πΉ βΎ π) β ((π βΎs π) RingHom π
) β (πΉ βΎ π) β ((π βΎs π) GrpHom π
)) |
88 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(0gβ(π βΎs π)) = (0gβ(π βΎs π)) |
89 | 88, 52 | ghmid 19092 |
. . . . . . . . . . . . . 14
β’ ((πΉ βΎ π) β ((π βΎs π) GrpHom π
) β ((πΉ βΎ π)β(0gβ(π βΎs π))) = (0gβπ
)) |
90 | 77, 87, 89 | 3syl 18 |
. . . . . . . . . . . . 13
β’ (π β ((πΉ βΎ π)β(0gβ(π βΎs π))) = (0gβπ
)) |
91 | 86, 90 | eqtrd 2772 |
. . . . . . . . . . . 12
β’ (π β ((πΉ βΎ π)β(0gβπ)) = (0gβπ
)) |
92 | 91 | ad3antrrr 728 |
. . . . . . . . . . 11
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β ((πΉ βΎ π)β(0gβπ)) = (0gβπ
)) |
93 | 83, 92 | eqtrd 2772 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β ((πΉ βΎ π)βπ) = (0gβπ
)) |
94 | | simplrr 776 |
. . . . . . . . . 10
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β (πΉβπ) = π₯) |
95 | 81, 93, 94 | 3eqtr3rd 2781 |
. . . . . . . . 9
β’ ((((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β§ π = (0gβπ)) β π₯ = (0gβπ
)) |
96 | 80, 95 | mteqand 3033 |
. . . . . . . 8
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π β (0gβπ)) |
97 | 2 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π β (SubDRingβπ)) |
98 | | eqid 2732 |
. . . . . . . . . 10
β’
(Unitβ(π
βΎs π)) =
(Unitβ(π
βΎs π)) |
99 | 69, 43, 98 | sdrgunit 20404 |
. . . . . . . . 9
β’ (π β (SubDRingβπ) β (π β (Unitβ(π βΎs π)) β (π β π β§ π β (0gβπ)))) |
100 | 97, 99 | syl 17 |
. . . . . . . 8
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β (π β (Unitβ(π βΎs π)) β (π β π β§ π β (0gβπ)))) |
101 | 67, 96, 100 | mpbir2and 711 |
. . . . . . 7
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π β (Unitβ(π βΎs π))) |
102 | | elrhmunit 20281 |
. . . . . . 7
β’ (((πΉ βΎ π) β ((π βΎs π) RingHom π
) β§ π β (Unitβ(π βΎs π))) β ((πΉ βΎ π)βπ) β (Unitβπ
)) |
103 | 78, 101, 102 | syl2anc 584 |
. . . . . 6
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β ((πΉ βΎ π)βπ) β (Unitβπ
)) |
104 | 68, 103 | eqeltrrd 2834 |
. . . . 5
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β (πΉβπ) β (Unitβπ
)) |
105 | 66, 104 | eqeltrrd 2834 |
. . . 4
β’ (((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β§ (π β π β§ (πΉβπ) = π₯)) β π₯ β (Unitβπ
)) |
106 | 65, 105 | rexlimddv 3161 |
. . 3
β’ ((π β§ π₯ β ((Baseβπ
) β {(0gβπ
)})) β π₯ β (Unitβπ
)) |
107 | 59, 106 | eqelssd 4002 |
. 2
β’ (π β (Unitβπ
) = ((Baseβπ
) β
{(0gβπ
)})) |
108 | 10, 11, 52 | isdrng 20311 |
. 2
β’ (π
β DivRing β (π
β Ring β§
(Unitβπ
) =
((Baseβπ
) β
{(0gβπ
)}))) |
109 | 9, 107, 108 | sylanbrc 583 |
1
β’ (π β π
β DivRing) |