MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imadrhmcl Structured version   Visualization version   GIF version

Theorem imadrhmcl 20814
Description: The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025.)
Hypotheses
Ref Expression
imadrhmcl.r 𝑅 = (𝑁s (𝐹𝑆))
imadrhmcl.0 0 = (0g𝑁)
imadrhmcl.h (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
imadrhmcl.s (𝜑𝑆 ∈ (SubDRing‘𝑀))
imadrhmcl.1 (𝜑 → ran 𝐹 ≠ { 0 })
Assertion
Ref Expression
imadrhmcl (𝜑𝑅 ∈ DivRing)

Proof of Theorem imadrhmcl
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imadrhmcl.h . . . 4 (𝜑𝐹 ∈ (𝑀 RingHom 𝑁))
2 imadrhmcl.s . . . . 5 (𝜑𝑆 ∈ (SubDRing‘𝑀))
3 sdrgsubrg 20808 . . . . 5 (𝑆 ∈ (SubDRing‘𝑀) → 𝑆 ∈ (SubRing‘𝑀))
42, 3syl 17 . . . 4 (𝜑𝑆 ∈ (SubRing‘𝑀))
5 rhmima 20620 . . . 4 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ (SubRing‘𝑁))
61, 4, 5syl2anc 584 . . 3 (𝜑 → (𝐹𝑆) ∈ (SubRing‘𝑁))
7 imadrhmcl.r . . . 4 𝑅 = (𝑁s (𝐹𝑆))
87subrgring 20590 . . 3 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 𝑅 ∈ Ring)
96, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 eqid 2734 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2734 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
1210, 11unitss 20392 . . . . 5 (Unit‘𝑅) ⊆ (Base‘𝑅)
1312a1i 11 . . . 4 (𝜑 → (Unit‘𝑅) ⊆ (Base‘𝑅))
14 imadrhmcl.1 . . . . . 6 (𝜑 → ran 𝐹 ≠ { 0 })
15 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
16 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
1715, 16rhmf 20501 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
181, 17syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
1918adantr 480 . . . . . . . . 9 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
20 rhmrcl2 20493 . . . . . . . . . . . 12 (𝐹 ∈ (𝑀 RingHom 𝑁) → 𝑁 ∈ Ring)
211, 20syl 17 . . . . . . . . . . 11 (𝜑𝑁 ∈ Ring)
22 simpr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (1r𝑅) = (0g𝑅))
23 eqid 2734 . . . . . . . . . . . . . . 15 (1r𝑁) = (1r𝑁)
247, 23subrg1 20598 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ (SubRing‘𝑁) → (1r𝑁) = (1r𝑅))
256, 24syl 17 . . . . . . . . . . . . 13 (𝜑 → (1r𝑁) = (1r𝑅))
2625adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (1r𝑁) = (1r𝑅))
27 imadrhmcl.0 . . . . . . . . . . . . . . 15 0 = (0g𝑁)
287, 27subrg0 20595 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ (SubRing‘𝑁) → 0 = (0g𝑅))
296, 28syl 17 . . . . . . . . . . . . 13 (𝜑0 = (0g𝑅))
3029adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 0 = (0g𝑅))
3122, 26, 303eqtr4rd 2785 . . . . . . . . . . 11 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 0 = (1r𝑁))
3216, 27, 2301eq0ring 20546 . . . . . . . . . . 11 ((𝑁 ∈ Ring ∧ 0 = (1r𝑁)) → (Base‘𝑁) = { 0 })
3321, 31, 32syl2an2r 685 . . . . . . . . . 10 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (Base‘𝑁) = { 0 })
3433feq3d 6723 . . . . . . . . 9 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (𝐹:(Base‘𝑀)⟶(Base‘𝑁) ↔ 𝐹:(Base‘𝑀)⟶{ 0 }))
3519, 34mpbid 232 . . . . . . . 8 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹:(Base‘𝑀)⟶{ 0 })
3627fvexi 6920 . . . . . . . . 9 0 ∈ V
3736fconst2 7224 . . . . . . . 8 (𝐹:(Base‘𝑀)⟶{ 0 } ↔ 𝐹 = ((Base‘𝑀) × { 0 }))
3835, 37sylib 218 . . . . . . 7 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → 𝐹 = ((Base‘𝑀) × { 0 }))
3918ffnd 6737 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝑀))
40 sdrgrcl 20806 . . . . . . . . . . . . 13 (𝑆 ∈ (SubDRing‘𝑀) → 𝑀 ∈ DivRing)
412, 40syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ DivRing)
4241drngringd 20753 . . . . . . . . . . 11 (𝜑𝑀 ∈ Ring)
43 eqid 2734 . . . . . . . . . . . 12 (0g𝑀) = (0g𝑀)
4415, 43ring0cl 20280 . . . . . . . . . . 11 (𝑀 ∈ Ring → (0g𝑀) ∈ (Base‘𝑀))
4542, 44syl 17 . . . . . . . . . 10 (𝜑 → (0g𝑀) ∈ (Base‘𝑀))
4645ne0d 4347 . . . . . . . . 9 (𝜑 → (Base‘𝑀) ≠ ∅)
47 fconst5 7225 . . . . . . . . 9 ((𝐹 Fn (Base‘𝑀) ∧ (Base‘𝑀) ≠ ∅) → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
4839, 46, 47syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
4948adantr 480 . . . . . . 7 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → (𝐹 = ((Base‘𝑀) × { 0 }) ↔ ran 𝐹 = { 0 }))
5038, 49mpbid 232 . . . . . 6 ((𝜑 ∧ (1r𝑅) = (0g𝑅)) → ran 𝐹 = { 0 })
5114, 50mteqand 3030 . . . . 5 (𝜑 → (1r𝑅) ≠ (0g𝑅))
52 eqid 2734 . . . . . . . 8 (0g𝑅) = (0g𝑅)
53 eqid 2734 . . . . . . . 8 (1r𝑅) = (1r𝑅)
5411, 52, 530unit 20412 . . . . . . 7 (𝑅 ∈ Ring → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
559, 54syl 17 . . . . . 6 (𝜑 → ((0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) = (0g𝑅)))
5655necon3bbid 2975 . . . . 5 (𝜑 → (¬ (0g𝑅) ∈ (Unit‘𝑅) ↔ (1r𝑅) ≠ (0g𝑅)))
5751, 56mpbird 257 . . . 4 (𝜑 → ¬ (0g𝑅) ∈ (Unit‘𝑅))
58 ssdifsn 4792 . . . 4 ((Unit‘𝑅) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ ((Unit‘𝑅) ⊆ (Base‘𝑅) ∧ ¬ (0g𝑅) ∈ (Unit‘𝑅)))
5913, 57, 58sylanbrc 583 . . 3 (𝜑 → (Unit‘𝑅) ⊆ ((Base‘𝑅) ∖ {(0g𝑅)}))
6039fnfund 6669 . . . . 5 (𝜑 → Fun 𝐹)
617ressbasss2 17285 . . . . . 6 (Base‘𝑅) ⊆ (𝐹𝑆)
62 eldifi 4140 . . . . . 6 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ∈ (Base‘𝑅))
6361, 62sselid 3992 . . . . 5 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ∈ (𝐹𝑆))
64 fvelima 6973 . . . . 5 ((Fun 𝐹𝑥 ∈ (𝐹𝑆)) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
6560, 63, 64syl2an 596 . . . 4 ((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → ∃𝑎𝑆 (𝐹𝑎) = 𝑥)
66 simprr 773 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑎) = 𝑥)
67 simprl 771 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎𝑆)
6867fvresd 6926 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑆)‘𝑎) = (𝐹𝑎))
69 eqid 2734 . . . . . . . . . . 11 (𝑀s 𝑆) = (𝑀s 𝑆)
7069resrhm 20617 . . . . . . . . . 10 ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑆 ∈ (SubRing‘𝑀)) → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁))
711, 4, 70syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁))
72 df-ima 5701 . . . . . . . . . . 11 (𝐹𝑆) = ran (𝐹𝑆)
73 eqimss2 4054 . . . . . . . . . . 11 ((𝐹𝑆) = ran (𝐹𝑆) → ran (𝐹𝑆) ⊆ (𝐹𝑆))
7472, 73mp1i 13 . . . . . . . . . 10 (𝜑 → ran (𝐹𝑆) ⊆ (𝐹𝑆))
757resrhm2b 20618 . . . . . . . . . 10 (((𝐹𝑆) ∈ (SubRing‘𝑁) ∧ ran (𝐹𝑆) ⊆ (𝐹𝑆)) → ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁) ↔ (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅)))
766, 74, 75syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑁) ↔ (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅)))
7771, 76mpbid 232 . . . . . . . 8 (𝜑 → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅))
7877ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅))
79 eldifsni 4794 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) → 𝑥 ≠ (0g𝑅))
8079ad2antlr 727 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑥 ≠ (0g𝑅))
8168adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = (𝐹𝑎))
82 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → 𝑎 = (0g𝑀))
8382fveq2d 6910 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = ((𝐹𝑆)‘(0g𝑀)))
8469, 43subrg0 20595 . . . . . . . . . . . . . . 15 (𝑆 ∈ (SubRing‘𝑀) → (0g𝑀) = (0g‘(𝑀s 𝑆)))
854, 84syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑀) = (0g‘(𝑀s 𝑆)))
8685fveq2d 6910 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑆)‘(0g𝑀)) = ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))))
87 rhmghm 20500 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅) → (𝐹𝑆) ∈ ((𝑀s 𝑆) GrpHom 𝑅))
88 eqid 2734 . . . . . . . . . . . . . . 15 (0g‘(𝑀s 𝑆)) = (0g‘(𝑀s 𝑆))
8988, 52ghmid 19252 . . . . . . . . . . . . . 14 ((𝐹𝑆) ∈ ((𝑀s 𝑆) GrpHom 𝑅) → ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))) = (0g𝑅))
9077, 87, 893syl 18 . . . . . . . . . . . . 13 (𝜑 → ((𝐹𝑆)‘(0g‘(𝑀s 𝑆))) = (0g𝑅))
9186, 90eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑆)‘(0g𝑀)) = (0g𝑅))
9291ad3antrrr 730 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘(0g𝑀)) = (0g𝑅))
9383, 92eqtrd 2774 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → ((𝐹𝑆)‘𝑎) = (0g𝑅))
94 simplrr 778 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → (𝐹𝑎) = 𝑥)
9581, 93, 943eqtr3rd 2783 . . . . . . . . 9 ((((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) ∧ 𝑎 = (0g𝑀)) → 𝑥 = (0g𝑅))
9680, 95mteqand 3030 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎 ≠ (0g𝑀))
972ad2antrr 726 . . . . . . . . 9 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑆 ∈ (SubDRing‘𝑀))
98 eqid 2734 . . . . . . . . . 10 (Unit‘(𝑀s 𝑆)) = (Unit‘(𝑀s 𝑆))
9969, 43, 98sdrgunit 20813 . . . . . . . . 9 (𝑆 ∈ (SubDRing‘𝑀) → (𝑎 ∈ (Unit‘(𝑀s 𝑆)) ↔ (𝑎𝑆𝑎 ≠ (0g𝑀))))
10097, 99syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝑎 ∈ (Unit‘(𝑀s 𝑆)) ↔ (𝑎𝑆𝑎 ≠ (0g𝑀))))
10167, 96, 100mpbir2and 713 . . . . . . 7 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑎 ∈ (Unit‘(𝑀s 𝑆)))
102 elrhmunit 20526 . . . . . . 7 (((𝐹𝑆) ∈ ((𝑀s 𝑆) RingHom 𝑅) ∧ 𝑎 ∈ (Unit‘(𝑀s 𝑆))) → ((𝐹𝑆)‘𝑎) ∈ (Unit‘𝑅))
10378, 101, 102syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → ((𝐹𝑆)‘𝑎) ∈ (Unit‘𝑅))
10468, 103eqeltrrd 2839 . . . . 5 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → (𝐹𝑎) ∈ (Unit‘𝑅))
10566, 104eqeltrrd 2839 . . . 4 (((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) ∧ (𝑎𝑆 ∧ (𝐹𝑎) = 𝑥)) → 𝑥 ∈ (Unit‘𝑅))
10665, 105rexlimddv 3158 . . 3 ((𝜑𝑥 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑥 ∈ (Unit‘𝑅))
10759, 106eqelssd 4016 . 2 (𝜑 → (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)}))
10810, 11, 52isdrng 20749 . 2 (𝑅 ∈ DivRing ↔ (𝑅 ∈ Ring ∧ (Unit‘𝑅) = ((Base‘𝑅) ∖ {(0g𝑅)})))
1099, 107, 108sylanbrc 583 1 (𝜑𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wne 2937  wrex 3067  cdif 3959  wss 3962  c0 4338  {csn 4630   × cxp 5686  ran crn 5689  cres 5690  cima 5691  Fun wfun 6556   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  0gc0g 17485   GrpHom cghm 19242  1rcur 20198  Ringcrg 20250  Unitcui 20371   RingHom crh 20485  SubRingcsubrg 20585  DivRingcdr 20745  SubDRingcsdrg 20803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-0g 17487  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-subg 19153  df-ghm 19243  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-drng 20747  df-sdrg 20804
This theorem is referenced by:  rndrhmcl  33279  ricdrng1  42514
  Copyright terms: Public domain W3C validator