Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ricdrng1 Structured version   Visualization version   GIF version

Theorem ricdrng1 41559
Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
Assertion
Ref Expression
ricdrng1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)

Proof of Theorem ricdrng1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brric 20395 . . 3 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 n0 4338 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 eqid 2724 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2724 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
64, 5rimf1o 20385 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
7 f1ofo 6830 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆))
8 foima 6800 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
96, 7, 83syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
109oveq2d 7417 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (Base‘𝑆)))
11 rimrcl2 41548 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
125ressid 17187 . . . . . . . . 9 (𝑆 ∈ Ring → (𝑆s (Base‘𝑆)) = 𝑆)
1311, 12syl 17 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (Base‘𝑆)) = 𝑆)
1410, 13eqtr2d 2765 . . . . . . 7 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
1514adantr 480 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
16 eqid 2724 . . . . . . 7 (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (𝑓 “ (Base‘𝑅)))
17 eqid 2724 . . . . . . 7 (0g𝑆) = (0g𝑆)
18 rimrhm 20387 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆))
1918adantr 480 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑓 ∈ (𝑅 RingHom 𝑆))
204sdrgid 20632 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
2120adantl 481 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑅) ∈ (SubDRing‘𝑅))
22 forn 6798 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑓 = (Base‘𝑆))
236, 7, 223syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → ran 𝑓 = (Base‘𝑆))
2423adantr 480 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 = (Base‘𝑆))
25 rhmrcl2 20368 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
26 eqid 2724 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
275, 26ringidcl 20154 . . . . . . . . . 10 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
2818, 25, 273syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (1r𝑆) ∈ (Base‘𝑆))
29 eqid 2724 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
30 eqid 2724 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
3129, 30drngunz 20595 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑅) ≠ (0g𝑅))
33 f1of1 6822 . . . . . . . . . . . . . . 15 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
346, 33syl 17 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
35 drngring 20583 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
364, 30ringidcl 20154 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
384, 29ring0cl 20155 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3935, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (0g𝑅) ∈ (Base‘𝑅))
4037, 39jca 511 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)))
41 f1veqaeq 7248 . . . . . . . . . . . . . 14 ((𝑓:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅))) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4234, 40, 41syl2an 595 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4342imp 406 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) ∧ (𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅))) → (1r𝑅) = (0g𝑅))
4432, 43mteqand 3025 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) ≠ (𝑓‘(0g𝑅)))
4530, 26rhm1 20380 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → (𝑓‘(1r𝑅)) = (1r𝑆))
4619, 45syl 17 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) = (1r𝑆))
47 rhmghm 20375 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆))
4829, 17ghmid 19136 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 GrpHom 𝑆) → (𝑓‘(0g𝑅)) = (0g𝑆))
4919, 47, 483syl 18 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(0g𝑅)) = (0g𝑆))
5044, 46, 493netr3d 3009 . . . . . . . . . 10 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑆) ≠ (0g𝑆))
51 nelsn 4660 . . . . . . . . . 10 ((1r𝑆) ≠ (0g𝑆) → ¬ (1r𝑆) ∈ {(0g𝑆)})
5250, 51syl 17 . . . . . . . . 9 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ¬ (1r𝑆) ∈ {(0g𝑆)})
53 nelne1 3031 . . . . . . . . 9 (((1r𝑆) ∈ (Base‘𝑆) ∧ ¬ (1r𝑆) ∈ {(0g𝑆)}) → (Base‘𝑆) ≠ {(0g𝑆)})
5428, 52, 53syl2an2r 682 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑆) ≠ {(0g𝑆)})
5524, 54eqnetrd 3000 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 ≠ {(0g𝑆)})
5616, 17, 19, 21, 55imadrhmcl 20637 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑆s (𝑓 “ (Base‘𝑅))) ∈ DivRing)
5715, 56eqeltrd 2825 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
5857ex 412 . . . 4 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
5958exlimiv 1925 . . 3 (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
6059imp 406 . 2 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
613, 60sylanb 580 1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2932  c0 4314  {csn 4620   class class class wbr 5138  ran crn 5667  cima 5669  1-1wf1 6530  ontowfo 6531  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  Basecbs 17142  s cress 17171  0gc0g 17383   GrpHom cghm 19127  1rcur 20075  Ringcrg 20127   RingHom crh 20360   RingIso crs 20361  𝑟 cric 20362  DivRingcdr 20576  SubDRingcsdrg 20626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17095  df-slot 17113  df-ndx 17125  df-base 17143  df-ress 17172  df-plusg 17208  df-mulr 17209  df-0g 17385  df-mgm 18562  df-sgrp 18641  df-mnd 18657  df-mhm 18702  df-submnd 18703  df-grp 18855  df-minusg 18856  df-subg 19039  df-ghm 19128  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-rhm 20363  df-rim 20364  df-ric 20366  df-subrng 20435  df-subrg 20460  df-drng 20578  df-sdrg 20627
This theorem is referenced by:  ricdrng  41560
  Copyright terms: Public domain W3C validator