Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ricdrng1 Structured version   Visualization version   GIF version

Theorem ricdrng1 42501
Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
Assertion
Ref Expression
ricdrng1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)

Proof of Theorem ricdrng1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brric 20472 . . 3 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 n0 4333 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 eqid 2734 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2734 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
64, 5rimf1o 20462 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
7 f1ofo 6835 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆))
8 foima 6805 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
96, 7, 83syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
109oveq2d 7429 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (Base‘𝑆)))
11 rimrcl2 42489 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
125ressid 17267 . . . . . . . . 9 (𝑆 ∈ Ring → (𝑆s (Base‘𝑆)) = 𝑆)
1311, 12syl 17 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (Base‘𝑆)) = 𝑆)
1410, 13eqtr2d 2770 . . . . . . 7 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
1514adantr 480 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
16 eqid 2734 . . . . . . 7 (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (𝑓 “ (Base‘𝑅)))
17 eqid 2734 . . . . . . 7 (0g𝑆) = (0g𝑆)
18 rimrhm 20464 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆))
1918adantr 480 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑓 ∈ (𝑅 RingHom 𝑆))
204sdrgid 20761 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
2120adantl 481 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑅) ∈ (SubDRing‘𝑅))
22 forn 6803 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑓 = (Base‘𝑆))
236, 7, 223syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → ran 𝑓 = (Base‘𝑆))
2423adantr 480 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 = (Base‘𝑆))
25 rhmrcl2 20445 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
26 eqid 2734 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
275, 26ringidcl 20230 . . . . . . . . . 10 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
2818, 25, 273syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (1r𝑆) ∈ (Base‘𝑆))
29 eqid 2734 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
30 eqid 2734 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
3129, 30drngunz 20715 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑅) ≠ (0g𝑅))
33 f1of1 6827 . . . . . . . . . . . . . . 15 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
346, 33syl 17 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
35 drngring 20704 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
364, 30ringidcl 20230 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
384, 29ring0cl 20232 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3935, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (0g𝑅) ∈ (Base‘𝑅))
4037, 39jca 511 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)))
41 f1veqaeq 7259 . . . . . . . . . . . . . 14 ((𝑓:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅))) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4234, 40, 41syl2an 596 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4342imp 406 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) ∧ (𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅))) → (1r𝑅) = (0g𝑅))
4432, 43mteqand 3022 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) ≠ (𝑓‘(0g𝑅)))
4530, 26rhm1 20457 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → (𝑓‘(1r𝑅)) = (1r𝑆))
4619, 45syl 17 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) = (1r𝑆))
47 rhmghm 20452 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆))
4829, 17ghmid 19209 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 GrpHom 𝑆) → (𝑓‘(0g𝑅)) = (0g𝑆))
4919, 47, 483syl 18 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(0g𝑅)) = (0g𝑆))
5044, 46, 493netr3d 3007 . . . . . . . . . 10 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑆) ≠ (0g𝑆))
51 nelsn 4646 . . . . . . . . . 10 ((1r𝑆) ≠ (0g𝑆) → ¬ (1r𝑆) ∈ {(0g𝑆)})
5250, 51syl 17 . . . . . . . . 9 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ¬ (1r𝑆) ∈ {(0g𝑆)})
53 nelne1 3028 . . . . . . . . 9 (((1r𝑆) ∈ (Base‘𝑆) ∧ ¬ (1r𝑆) ∈ {(0g𝑆)}) → (Base‘𝑆) ≠ {(0g𝑆)})
5428, 52, 53syl2an2r 685 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑆) ≠ {(0g𝑆)})
5524, 54eqnetrd 2998 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 ≠ {(0g𝑆)})
5616, 17, 19, 21, 55imadrhmcl 20766 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑆s (𝑓 “ (Base‘𝑅))) ∈ DivRing)
5715, 56eqeltrd 2833 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
5857ex 412 . . . 4 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
5958exlimiv 1929 . . 3 (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
6059imp 406 . 2 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
613, 60sylanb 581 1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  c0 4313  {csn 4606   class class class wbr 5123  ran crn 5666  cima 5668  1-1wf1 6538  ontowfo 6539  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7413  Basecbs 17229  s cress 17252  0gc0g 17455   GrpHom cghm 19199  1rcur 20146  Ringcrg 20198   RingHom crh 20437   RingIso crs 20438  𝑟 cric 20439  DivRingcdr 20697  SubDRingcsdrg 20755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-mhm 18765  df-submnd 18766  df-grp 18923  df-minusg 18924  df-subg 19110  df-ghm 19200  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-rhm 20440  df-rim 20441  df-ric 20443  df-subrng 20514  df-subrg 20538  df-drng 20699  df-sdrg 20756
This theorem is referenced by:  ricdrng  42502
  Copyright terms: Public domain W3C validator