Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ricdrng1 Structured version   Visualization version   GIF version

Theorem ricdrng1 42511
Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
Assertion
Ref Expression
ricdrng1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)

Proof of Theorem ricdrng1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brric 20389 . . 3 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 n0 4304 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2729 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
64, 5rimf1o 20379 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
7 f1ofo 6771 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆))
8 foima 6741 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
96, 7, 83syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
109oveq2d 7365 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (Base‘𝑆)))
11 rimrcl2 42499 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
125ressid 17155 . . . . . . . . 9 (𝑆 ∈ Ring → (𝑆s (Base‘𝑆)) = 𝑆)
1311, 12syl 17 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (Base‘𝑆)) = 𝑆)
1410, 13eqtr2d 2765 . . . . . . 7 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
1514adantr 480 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
16 eqid 2729 . . . . . . 7 (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (𝑓 “ (Base‘𝑅)))
17 eqid 2729 . . . . . . 7 (0g𝑆) = (0g𝑆)
18 rimrhm 20381 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆))
1918adantr 480 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑓 ∈ (𝑅 RingHom 𝑆))
204sdrgid 20677 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
2120adantl 481 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑅) ∈ (SubDRing‘𝑅))
22 forn 6739 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑓 = (Base‘𝑆))
236, 7, 223syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → ran 𝑓 = (Base‘𝑆))
2423adantr 480 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 = (Base‘𝑆))
25 rhmrcl2 20362 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
26 eqid 2729 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
275, 26ringidcl 20150 . . . . . . . . . 10 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
2818, 25, 273syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (1r𝑆) ∈ (Base‘𝑆))
29 eqid 2729 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
30 eqid 2729 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
3129, 30drngunz 20632 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑅) ≠ (0g𝑅))
33 f1of1 6763 . . . . . . . . . . . . . . 15 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
346, 33syl 17 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
35 drngring 20621 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
364, 30ringidcl 20150 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
384, 29ring0cl 20152 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3935, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (0g𝑅) ∈ (Base‘𝑅))
4037, 39jca 511 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)))
41 f1veqaeq 7193 . . . . . . . . . . . . . 14 ((𝑓:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅))) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4234, 40, 41syl2an 596 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4342imp 406 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) ∧ (𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅))) → (1r𝑅) = (0g𝑅))
4432, 43mteqand 3016 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) ≠ (𝑓‘(0g𝑅)))
4530, 26rhm1 20374 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → (𝑓‘(1r𝑅)) = (1r𝑆))
4619, 45syl 17 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) = (1r𝑆))
47 rhmghm 20369 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆))
4829, 17ghmid 19101 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 GrpHom 𝑆) → (𝑓‘(0g𝑅)) = (0g𝑆))
4919, 47, 483syl 18 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(0g𝑅)) = (0g𝑆))
5044, 46, 493netr3d 3001 . . . . . . . . . 10 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑆) ≠ (0g𝑆))
51 nelsn 4618 . . . . . . . . . 10 ((1r𝑆) ≠ (0g𝑆) → ¬ (1r𝑆) ∈ {(0g𝑆)})
5250, 51syl 17 . . . . . . . . 9 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ¬ (1r𝑆) ∈ {(0g𝑆)})
53 nelne1 3022 . . . . . . . . 9 (((1r𝑆) ∈ (Base‘𝑆) ∧ ¬ (1r𝑆) ∈ {(0g𝑆)}) → (Base‘𝑆) ≠ {(0g𝑆)})
5428, 52, 53syl2an2r 685 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑆) ≠ {(0g𝑆)})
5524, 54eqnetrd 2992 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 ≠ {(0g𝑆)})
5616, 17, 19, 21, 55imadrhmcl 20682 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑆s (𝑓 “ (Base‘𝑅))) ∈ DivRing)
5715, 56eqeltrd 2828 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
5857ex 412 . . . 4 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
5958exlimiv 1930 . . 3 (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
6059imp 406 . 2 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
613, 60sylanb 581 1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  c0 4284  {csn 4577   class class class wbr 5092  ran crn 5620  cima 5622  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Basecbs 17120  s cress 17141  0gc0g 17343   GrpHom cghm 19091  1rcur 20066  Ringcrg 20118   RingHom crh 20354   RingIso crs 20355  𝑟 cric 20356  DivRingcdr 20614  SubDRingcsdrg 20671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-subg 19002  df-ghm 19092  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-rim 20358  df-ric 20360  df-subrng 20431  df-subrg 20455  df-drng 20616  df-sdrg 20672
This theorem is referenced by:  ricdrng  42512
  Copyright terms: Public domain W3C validator