Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ricdrng1 Structured version   Visualization version   GIF version

Theorem ricdrng1 42543
Description: A ring isomorphism maps a division ring to a division ring. (Contributed by SN, 18-Feb-2025.)
Assertion
Ref Expression
ricdrng1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)

Proof of Theorem ricdrng1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brric 20505 . . 3 (𝑅𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅)
2 n0 4352 . . 3 ((𝑅 RingIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))
4 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
64, 5rimf1o 20495 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
7 f1ofo 6854 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–onto→(Base‘𝑆))
8 foima 6824 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
96, 7, 83syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑓 “ (Base‘𝑅)) = (Base‘𝑆))
109oveq2d 7448 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (Base‘𝑆)))
11 rimrcl2 42531 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 ∈ Ring)
125ressid 17291 . . . . . . . . 9 (𝑆 ∈ Ring → (𝑆s (Base‘𝑆)) = 𝑆)
1311, 12syl 17 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑆s (Base‘𝑆)) = 𝑆)
1410, 13eqtr2d 2777 . . . . . . 7 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
1514adantr 480 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 = (𝑆s (𝑓 “ (Base‘𝑅))))
16 eqid 2736 . . . . . . 7 (𝑆s (𝑓 “ (Base‘𝑅))) = (𝑆s (𝑓 “ (Base‘𝑅)))
17 eqid 2736 . . . . . . 7 (0g𝑆) = (0g𝑆)
18 rimrhm 20497 . . . . . . . 8 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 RingHom 𝑆))
1918adantr 480 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑓 ∈ (𝑅 RingHom 𝑆))
204sdrgid 20794 . . . . . . . 8 (𝑅 ∈ DivRing → (Base‘𝑅) ∈ (SubDRing‘𝑅))
2120adantl 481 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑅) ∈ (SubDRing‘𝑅))
22 forn 6822 . . . . . . . . . 10 (𝑓:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑓 = (Base‘𝑆))
236, 7, 223syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → ran 𝑓 = (Base‘𝑆))
2423adantr 480 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 = (Base‘𝑆))
25 rhmrcl2 20478 . . . . . . . . . 10 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
26 eqid 2736 . . . . . . . . . . 11 (1r𝑆) = (1r𝑆)
275, 26ringidcl 20263 . . . . . . . . . 10 (𝑆 ∈ Ring → (1r𝑆) ∈ (Base‘𝑆))
2818, 25, 273syl 18 . . . . . . . . 9 (𝑓 ∈ (𝑅 RingIso 𝑆) → (1r𝑆) ∈ (Base‘𝑆))
29 eqid 2736 . . . . . . . . . . . . . 14 (0g𝑅) = (0g𝑅)
30 eqid 2736 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
3129, 30drngunz 20748 . . . . . . . . . . . . 13 (𝑅 ∈ DivRing → (1r𝑅) ≠ (0g𝑅))
3231adantl 481 . . . . . . . . . . . 12 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑅) ≠ (0g𝑅))
33 f1of1 6846 . . . . . . . . . . . . . . 15 (𝑓:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
346, 33syl 17 . . . . . . . . . . . . . 14 (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓:(Base‘𝑅)–1-1→(Base‘𝑆))
35 drngring 20737 . . . . . . . . . . . . . . . 16 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
364, 30ringidcl 20263 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
3735, 36syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (1r𝑅) ∈ (Base‘𝑅))
384, 29ring0cl 20265 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → (0g𝑅) ∈ (Base‘𝑅))
3935, 38syl 17 . . . . . . . . . . . . . . 15 (𝑅 ∈ DivRing → (0g𝑅) ∈ (Base‘𝑅))
4037, 39jca 511 . . . . . . . . . . . . . 14 (𝑅 ∈ DivRing → ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅)))
41 f1veqaeq 7278 . . . . . . . . . . . . . 14 ((𝑓:(Base‘𝑅)–1-1→(Base‘𝑆) ∧ ((1r𝑅) ∈ (Base‘𝑅) ∧ (0g𝑅) ∈ (Base‘𝑅))) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4234, 40, 41syl2an 596 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ((𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅)) → (1r𝑅) = (0g𝑅)))
4342imp 406 . . . . . . . . . . . 12 (((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) ∧ (𝑓‘(1r𝑅)) = (𝑓‘(0g𝑅))) → (1r𝑅) = (0g𝑅))
4432, 43mteqand 3032 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) ≠ (𝑓‘(0g𝑅)))
4530, 26rhm1 20490 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → (𝑓‘(1r𝑅)) = (1r𝑆))
4619, 45syl 17 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(1r𝑅)) = (1r𝑆))
47 rhmghm 20485 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 RingHom 𝑆) → 𝑓 ∈ (𝑅 GrpHom 𝑆))
4829, 17ghmid 19241 . . . . . . . . . . . 12 (𝑓 ∈ (𝑅 GrpHom 𝑆) → (𝑓‘(0g𝑅)) = (0g𝑆))
4919, 47, 483syl 18 . . . . . . . . . . 11 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑓‘(0g𝑅)) = (0g𝑆))
5044, 46, 493netr3d 3016 . . . . . . . . . 10 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (1r𝑆) ≠ (0g𝑆))
51 nelsn 4665 . . . . . . . . . 10 ((1r𝑆) ≠ (0g𝑆) → ¬ (1r𝑆) ∈ {(0g𝑆)})
5250, 51syl 17 . . . . . . . . 9 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ¬ (1r𝑆) ∈ {(0g𝑆)})
53 nelne1 3038 . . . . . . . . 9 (((1r𝑆) ∈ (Base‘𝑆) ∧ ¬ (1r𝑆) ∈ {(0g𝑆)}) → (Base‘𝑆) ≠ {(0g𝑆)})
5428, 52, 53syl2an2r 685 . . . . . . . 8 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (Base‘𝑆) ≠ {(0g𝑆)})
5524, 54eqnetrd 3007 . . . . . . 7 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → ran 𝑓 ≠ {(0g𝑆)})
5616, 17, 19, 21, 55imadrhmcl 20799 . . . . . 6 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → (𝑆s (𝑓 “ (Base‘𝑅))) ∈ DivRing)
5715, 56eqeltrd 2840 . . . . 5 ((𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
5857ex 412 . . . 4 (𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
5958exlimiv 1929 . . 3 (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ DivRing → 𝑆 ∈ DivRing))
6059imp 406 . 2 ((∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) ∧ 𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
613, 60sylanb 581 1 ((𝑅𝑟 𝑆𝑅 ∈ DivRing) → 𝑆 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2939  c0 4332  {csn 4625   class class class wbr 5142  ran crn 5685  cima 5687  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  0gc0g 17485   GrpHom cghm 19231  1rcur 20179  Ringcrg 20231   RingHom crh 20470   RingIso crs 20471  𝑟 cric 20472  DivRingcdr 20730  SubDRingcsdrg 20788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-subg 19142  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-rhm 20473  df-rim 20474  df-ric 20476  df-subrng 20547  df-subrg 20571  df-drng 20732  df-sdrg 20789
This theorem is referenced by:  ricdrng  42544
  Copyright terms: Public domain W3C validator