![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt0 | Structured version Visualization version GIF version |
Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
flt0.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
flt0.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
flt0.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
flt0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
flt0.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
flt0 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt0.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1p1e2 12361 | . . . . . 6 ⊢ (1 + 1) = 2 | |
3 | sn-1ne2 41812 | . . . . . . 7 ⊢ 1 ≠ 2 | |
4 | 3 | necomi 2990 | . . . . . 6 ⊢ 2 ≠ 1 |
5 | 2, 4 | eqnetri 3006 | . . . . 5 ⊢ (1 + 1) ≠ 1 |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) ≠ 1) |
7 | flt0.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 7 | exp0d 14130 | . . . . 5 ⊢ (𝜑 → (𝐴↑0) = 1) |
9 | flt0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
10 | 9 | exp0d 14130 | . . . . 5 ⊢ (𝜑 → (𝐵↑0) = 1) |
11 | 8, 10 | oveq12d 7432 | . . . 4 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1)) |
12 | flt0.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
13 | 12 | exp0d 14130 | . . . 4 ⊢ (𝜑 → (𝐶↑0) = 1) |
14 | 6, 11, 13 | 3netr4d 3013 | . . 3 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0)) |
15 | flt0.1 | . . . . 5 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
16 | oveq2 7422 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
17 | oveq2 7422 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐵↑𝑁) = (𝐵↑0)) | |
18 | 16, 17 | oveq12d 7432 | . . . . . 6 ⊢ (𝑁 = 0 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = ((𝐴↑0) + (𝐵↑0))) |
19 | oveq2 7422 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐶↑𝑁) = (𝐶↑0)) | |
20 | 18, 19 | eqeq12d 2743 | . . . . 5 ⊢ (𝑁 = 0 → (((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
21 | 15, 20 | syl5ibcom 244 | . . . 4 ⊢ (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
22 | 21 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)) |
23 | 14, 22 | mteqand 3028 | . 2 ⊢ (𝜑 → 𝑁 ≠ 0) |
24 | elnnne0 12510 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
25 | 1, 23, 24 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 (class class class)co 7414 ℂcc 11130 0cc0 11132 1c1 11133 + caddc 11135 ℕcn 12236 2c2 12291 ℕ0cn0 12496 ↑cexp 14052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-neg 11471 df-nn 12237 df-2 12299 df-n0 12497 df-z 12583 df-seq 13993 df-exp 14053 |
This theorem is referenced by: fltaccoprm 42036 |
Copyright terms: Public domain | W3C validator |