Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt0 Structured version   Visualization version   GIF version

Theorem flt0 39994
Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
flt0.a (𝜑𝐴 ∈ ℂ)
flt0.b (𝜑𝐵 ∈ ℂ)
flt0.c (𝜑𝐶 ∈ ℂ)
flt0.n (𝜑𝑁 ∈ ℕ0)
flt0.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
flt0 (𝜑𝑁 ∈ ℕ)

Proof of Theorem flt0
StepHypRef Expression
1 flt0.n . 2 (𝜑𝑁 ∈ ℕ0)
2 1p1e2 11804 . . . . . 6 (1 + 1) = 2
3 sn-1ne2 39825 . . . . . . 7 1 ≠ 2
43necomi 3005 . . . . . 6 2 ≠ 1
52, 4eqnetri 3021 . . . . 5 (1 + 1) ≠ 1
65a1i 11 . . . 4 (𝜑 → (1 + 1) ≠ 1)
7 flt0.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
87exp0d 13559 . . . . 5 (𝜑 → (𝐴↑0) = 1)
9 flt0.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
109exp0d 13559 . . . . 5 (𝜑 → (𝐵↑0) = 1)
118, 10oveq12d 7173 . . . 4 (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1))
12 flt0.c . . . . 5 (𝜑𝐶 ∈ ℂ)
1312exp0d 13559 . . . 4 (𝜑 → (𝐶↑0) = 1)
146, 11, 133netr4d 3028 . . 3 (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0))
15 flt0.1 . . . . 5 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
16 oveq2 7163 . . . . . . 7 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
17 oveq2 7163 . . . . . . 7 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
1816, 17oveq12d 7173 . . . . . 6 (𝑁 = 0 → ((𝐴𝑁) + (𝐵𝑁)) = ((𝐴↑0) + (𝐵↑0)))
19 oveq2 7163 . . . . . 6 (𝑁 = 0 → (𝐶𝑁) = (𝐶↑0))
2018, 19eqeq12d 2774 . . . . 5 (𝑁 = 0 → (((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2115, 20syl5ibcom 248 . . . 4 (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2221imp 410 . . 3 ((𝜑𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))
2314, 22mteqand 3054 . 2 (𝜑𝑁 ≠ 0)
24 elnnne0 11953 . 2 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
251, 23, 24sylanbrc 586 1 (𝜑𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wne 2951  (class class class)co 7155  cc 10578  0cc0 10580  1c1 10581   + caddc 10583  cn 11679  2c2 11734  0cn0 11939  cexp 13484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-seq 13424  df-exp 13485
This theorem is referenced by:  fltaccoprm  39997
  Copyright terms: Public domain W3C validator