Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt0 | Structured version Visualization version GIF version |
Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
Ref | Expression |
---|---|
flt0.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
flt0.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
flt0.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
flt0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
flt0.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
Ref | Expression |
---|---|
flt0 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt0.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
2 | 1p1e2 12028 | . . . . . 6 ⊢ (1 + 1) = 2 | |
3 | sn-1ne2 40216 | . . . . . . 7 ⊢ 1 ≠ 2 | |
4 | 3 | necomi 2997 | . . . . . 6 ⊢ 2 ≠ 1 |
5 | 2, 4 | eqnetri 3013 | . . . . 5 ⊢ (1 + 1) ≠ 1 |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) ≠ 1) |
7 | flt0.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
8 | 7 | exp0d 13786 | . . . . 5 ⊢ (𝜑 → (𝐴↑0) = 1) |
9 | flt0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
10 | 9 | exp0d 13786 | . . . . 5 ⊢ (𝜑 → (𝐵↑0) = 1) |
11 | 8, 10 | oveq12d 7273 | . . . 4 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1)) |
12 | flt0.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
13 | 12 | exp0d 13786 | . . . 4 ⊢ (𝜑 → (𝐶↑0) = 1) |
14 | 6, 11, 13 | 3netr4d 3020 | . . 3 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0)) |
15 | flt0.1 | . . . . 5 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
16 | oveq2 7263 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
17 | oveq2 7263 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐵↑𝑁) = (𝐵↑0)) | |
18 | 16, 17 | oveq12d 7273 | . . . . . 6 ⊢ (𝑁 = 0 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = ((𝐴↑0) + (𝐵↑0))) |
19 | oveq2 7263 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐶↑𝑁) = (𝐶↑0)) | |
20 | 18, 19 | eqeq12d 2754 | . . . . 5 ⊢ (𝑁 = 0 → (((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
21 | 15, 20 | syl5ibcom 244 | . . . 4 ⊢ (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
22 | 21 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)) |
23 | 14, 22 | mteqand 3047 | . 2 ⊢ (𝜑 → 𝑁 ≠ 0) |
24 | elnnne0 12177 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
25 | 1, 23, 24 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 ℕcn 11903 2c2 11958 ℕ0cn0 12163 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-seq 13650 df-exp 13711 |
This theorem is referenced by: fltaccoprm 40393 |
Copyright terms: Public domain | W3C validator |