| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt0 | Structured version Visualization version GIF version | ||
| Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt0.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| flt0.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| flt0.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| flt0.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| flt0.1 | ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) |
| Ref | Expression |
|---|---|
| flt0 | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt0.n | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 2 | 1p1e2 12313 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 3 | sn-1ne2 42260 | . . . . . . 7 ⊢ 1 ≠ 2 | |
| 4 | 3 | necomi 2980 | . . . . . 6 ⊢ 2 ≠ 1 |
| 5 | 2, 4 | eqnetri 2996 | . . . . 5 ⊢ (1 + 1) ≠ 1 |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → (1 + 1) ≠ 1) |
| 7 | flt0.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 8 | 7 | exp0d 14112 | . . . . 5 ⊢ (𝜑 → (𝐴↑0) = 1) |
| 9 | flt0.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 10 | 9 | exp0d 14112 | . . . . 5 ⊢ (𝜑 → (𝐵↑0) = 1) |
| 11 | 8, 10 | oveq12d 7408 | . . . 4 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1)) |
| 12 | flt0.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 13 | 12 | exp0d 14112 | . . . 4 ⊢ (𝜑 → (𝐶↑0) = 1) |
| 14 | 6, 11, 13 | 3netr4d 3003 | . . 3 ⊢ (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0)) |
| 15 | flt0.1 | . . . . 5 ⊢ (𝜑 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁)) | |
| 16 | oveq2 7398 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐴↑𝑁) = (𝐴↑0)) | |
| 17 | oveq2 7398 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝐵↑𝑁) = (𝐵↑0)) | |
| 18 | 16, 17 | oveq12d 7408 | . . . . . 6 ⊢ (𝑁 = 0 → ((𝐴↑𝑁) + (𝐵↑𝑁)) = ((𝐴↑0) + (𝐵↑0))) |
| 19 | oveq2 7398 | . . . . . 6 ⊢ (𝑁 = 0 → (𝐶↑𝑁) = (𝐶↑0)) | |
| 20 | 18, 19 | eqeq12d 2746 | . . . . 5 ⊢ (𝑁 = 0 → (((𝐴↑𝑁) + (𝐵↑𝑁)) = (𝐶↑𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
| 21 | 15, 20 | syl5ibcom 245 | . . . 4 ⊢ (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))) |
| 22 | 21 | imp 406 | . . 3 ⊢ ((𝜑 ∧ 𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)) |
| 23 | 14, 22 | mteqand 3017 | . 2 ⊢ (𝜑 → 𝑁 ≠ 0) |
| 24 | elnnne0 12463 | . 2 ⊢ (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0)) | |
| 25 | 1, 23, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-seq 13974 df-exp 14034 |
| This theorem is referenced by: fltaccoprm 42635 |
| Copyright terms: Public domain | W3C validator |