Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt0 Structured version   Visualization version   GIF version

Theorem flt0 42755
Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
flt0.a (𝜑𝐴 ∈ ℂ)
flt0.b (𝜑𝐵 ∈ ℂ)
flt0.c (𝜑𝐶 ∈ ℂ)
flt0.n (𝜑𝑁 ∈ ℕ0)
flt0.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
flt0 (𝜑𝑁 ∈ ℕ)

Proof of Theorem flt0
StepHypRef Expression
1 flt0.n . 2 (𝜑𝑁 ∈ ℕ0)
2 1p1e2 12252 . . . . . 6 (1 + 1) = 2
3 sn-1ne2 42383 . . . . . . 7 1 ≠ 2
43necomi 2983 . . . . . 6 2 ≠ 1
52, 4eqnetri 2999 . . . . 5 (1 + 1) ≠ 1
65a1i 11 . . . 4 (𝜑 → (1 + 1) ≠ 1)
7 flt0.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
87exp0d 14049 . . . . 5 (𝜑 → (𝐴↑0) = 1)
9 flt0.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
109exp0d 14049 . . . . 5 (𝜑 → (𝐵↑0) = 1)
118, 10oveq12d 7370 . . . 4 (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1))
12 flt0.c . . . . 5 (𝜑𝐶 ∈ ℂ)
1312exp0d 14049 . . . 4 (𝜑 → (𝐶↑0) = 1)
146, 11, 133netr4d 3006 . . 3 (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0))
15 flt0.1 . . . . 5 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
16 oveq2 7360 . . . . . . 7 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
17 oveq2 7360 . . . . . . 7 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
1816, 17oveq12d 7370 . . . . . 6 (𝑁 = 0 → ((𝐴𝑁) + (𝐵𝑁)) = ((𝐴↑0) + (𝐵↑0)))
19 oveq2 7360 . . . . . 6 (𝑁 = 0 → (𝐶𝑁) = (𝐶↑0))
2018, 19eqeq12d 2749 . . . . 5 (𝑁 = 0 → (((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2115, 20syl5ibcom 245 . . . 4 (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2221imp 406 . . 3 ((𝜑𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))
2314, 22mteqand 3020 . 2 (𝜑𝑁 ≠ 0)
24 elnnne0 12402 . 2 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
251, 23, 24sylanbrc 583 1 (𝜑𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wne 2929  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014   + caddc 11016  cn 12132  2c2 12187  0cn0 12388  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-seq 13911  df-exp 13971
This theorem is referenced by:  fltaccoprm  42758
  Copyright terms: Public domain W3C validator