Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt0 Structured version   Visualization version   GIF version

Theorem flt0 41379
Description: A counterexample for FLT does not exist for 𝑁 = 0. (Contributed by SN, 20-Aug-2024.)
Hypotheses
Ref Expression
flt0.a (𝜑𝐴 ∈ ℂ)
flt0.b (𝜑𝐵 ∈ ℂ)
flt0.c (𝜑𝐶 ∈ ℂ)
flt0.n (𝜑𝑁 ∈ ℕ0)
flt0.1 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
Assertion
Ref Expression
flt0 (𝜑𝑁 ∈ ℕ)

Proof of Theorem flt0
StepHypRef Expression
1 flt0.n . 2 (𝜑𝑁 ∈ ℕ0)
2 1p1e2 12337 . . . . . 6 (1 + 1) = 2
3 sn-1ne2 41179 . . . . . . 7 1 ≠ 2
43necomi 2996 . . . . . 6 2 ≠ 1
52, 4eqnetri 3012 . . . . 5 (1 + 1) ≠ 1
65a1i 11 . . . 4 (𝜑 → (1 + 1) ≠ 1)
7 flt0.a . . . . . 6 (𝜑𝐴 ∈ ℂ)
87exp0d 14105 . . . . 5 (𝜑 → (𝐴↑0) = 1)
9 flt0.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
109exp0d 14105 . . . . 5 (𝜑 → (𝐵↑0) = 1)
118, 10oveq12d 7427 . . . 4 (𝜑 → ((𝐴↑0) + (𝐵↑0)) = (1 + 1))
12 flt0.c . . . . 5 (𝜑𝐶 ∈ ℂ)
1312exp0d 14105 . . . 4 (𝜑 → (𝐶↑0) = 1)
146, 11, 133netr4d 3019 . . 3 (𝜑 → ((𝐴↑0) + (𝐵↑0)) ≠ (𝐶↑0))
15 flt0.1 . . . . 5 (𝜑 → ((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁))
16 oveq2 7417 . . . . . . 7 (𝑁 = 0 → (𝐴𝑁) = (𝐴↑0))
17 oveq2 7417 . . . . . . 7 (𝑁 = 0 → (𝐵𝑁) = (𝐵↑0))
1816, 17oveq12d 7427 . . . . . 6 (𝑁 = 0 → ((𝐴𝑁) + (𝐵𝑁)) = ((𝐴↑0) + (𝐵↑0)))
19 oveq2 7417 . . . . . 6 (𝑁 = 0 → (𝐶𝑁) = (𝐶↑0))
2018, 19eqeq12d 2749 . . . . 5 (𝑁 = 0 → (((𝐴𝑁) + (𝐵𝑁)) = (𝐶𝑁) ↔ ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2115, 20syl5ibcom 244 . . . 4 (𝜑 → (𝑁 = 0 → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0)))
2221imp 408 . . 3 ((𝜑𝑁 = 0) → ((𝐴↑0) + (𝐵↑0)) = (𝐶↑0))
2314, 22mteqand 3034 . 2 (𝜑𝑁 ≠ 0)
24 elnnne0 12486 . 2 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0𝑁 ≠ 0))
251, 23, 24sylanbrc 584 1 (𝜑𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  wne 2941  (class class class)co 7409  cc 11108  0cc0 11110  1c1 11111   + caddc 11113  cn 12212  2c2 12267  0cn0 12472  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-seq 13967  df-exp 14028
This theorem is referenced by:  fltaccoprm  41382
  Copyright terms: Public domain W3C validator