Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspersym Structured version   Visualization version   GIF version

Theorem prjspersym 42595
Description: The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspersym ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspersym
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 𝑌)
2 prjsprel.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
32prjsprel 42592 . . . . 5 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
4 pm3.22 459 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
54adantr 480 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
63, 5sylbi 217 . . . 4 (𝑋 𝑌 → (𝑌𝐵𝑋𝐵))
71, 6syl 17 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
8 oveq1 7394 . . . . 5 (𝑛 = ((invr𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr𝑆)‘𝑚) · 𝑋))
98eqeq2d 2740 . . . 4 (𝑛 = ((invr𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
10 simplll 774 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec)
11 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
1211lvecdrng 21012 . . . . . 6 (𝑉 ∈ LVec → 𝑆 ∈ DivRing)
1310, 12syl 17 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing)
14 simplr 768 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚𝐾)
15 simpll 766 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
163, 15sylbi 217 . . . . . . 7 (𝑋 𝑌𝑋𝐵)
17 eldifsni 4754 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
18 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
1917, 18eleq2s 2846 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
201, 16, 193syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g𝑉))
21 simplr 768 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (𝑚 · 𝑌))
22 simpr 484 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑚 = (0g𝑆))
2322oveq1d 7402 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → (𝑚 · 𝑌) = ((0g𝑆) · 𝑌))
24 lveclmod 21013 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2524ad4antr 732 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑉 ∈ LMod)
26 simplr 768 . . . . . . . . . . 11 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌𝐵)
273, 26sylbi 217 . . . . . . . . . 10 (𝑋 𝑌𝑌𝐵)
28 eldifi 4094 . . . . . . . . . . 11 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
2928, 18eleq2s 2846 . . . . . . . . . 10 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
301, 27, 293syl 18 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉))
3130adantr 480 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑌 ∈ (Base‘𝑉))
32 eqid 2729 . . . . . . . . 9 (Base‘𝑉) = (Base‘𝑉)
33 prjspertr.x . . . . . . . . 9 · = ( ·𝑠𝑉)
34 eqid 2729 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
35 eqid 2729 . . . . . . . . 9 (0g𝑉) = (0g𝑉)
3632, 11, 33, 34, 35lmod0vs 20801 . . . . . . . 8 ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3725, 31, 36syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3821, 23, 373eqtrd 2768 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (0g𝑉))
3920, 38mteqand 3016 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g𝑆))
40 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
41 eqid 2729 . . . . . 6 (invr𝑆) = (invr𝑆)
4240, 34, 41drnginvrcl 20662 . . . . 5 ((𝑆 ∈ DivRing ∧ 𝑚𝐾𝑚 ≠ (0g𝑆)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
4313, 14, 39, 42syl3anc 1373 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
44 simpr 484 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌))
45 nelsn 4630 . . . . . . . 8 (𝑚 ≠ (0g𝑆) → ¬ 𝑚 ∈ {(0g𝑆)})
4639, 45syl 17 . . . . . . 7 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g𝑆)})
4714, 46eldifd 3925 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g𝑆)}))
48 eldifi 4094 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
4948, 18eleq2s 2846 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
501, 16, 493syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉))
5132, 33, 11, 40, 34, 41, 10, 47, 50, 30lvecinv 21023 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
5244, 51mpbid 232 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr𝑆)‘𝑚) · 𝑋))
539, 43, 52rspcedvdw 3591 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋))
542prjsprel 42592 . . 3 (𝑌 𝑋 ↔ ((𝑌𝐵𝑋𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋)))
557, 53, 54sylanbrc 583 . 2 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 𝑋)
56 simpr 484 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
573, 56sylbi 217 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5857adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5955, 58r19.29a 3141 1 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3911  {csn 4589   class class class wbr 5107  {copab 5169  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  invrcinvr 20296  DivRingcdr 20638  LModclmod 20766  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lvec 21010
This theorem is referenced by:  prjsper  42596  0prjspn  42616
  Copyright terms: Public domain W3C validator