Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspersym Structured version   Visualization version   GIF version

Theorem prjspersym 40367
Description: The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspersym ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspersym
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 772 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 𝑌)
2 prjsprel.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
32prjsprel 40364 . . . . 5 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
4 pm3.22 459 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
54adantr 480 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
63, 5sylbi 216 . . . 4 (𝑋 𝑌 → (𝑌𝐵𝑋𝐵))
71, 6syl 17 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
8 simplll 771 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec)
9 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
109lvecdrng 20282 . . . . . 6 (𝑉 ∈ LVec → 𝑆 ∈ DivRing)
118, 10syl 17 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing)
12 simplr 765 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚𝐾)
13 simpll 763 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
143, 13sylbi 216 . . . . . . 7 (𝑋 𝑌𝑋𝐵)
15 eldifsni 4720 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
16 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
1715, 16eleq2s 2857 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
181, 14, 173syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g𝑉))
19 simplr 765 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (𝑚 · 𝑌))
20 simpr 484 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑚 = (0g𝑆))
2120oveq1d 7270 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → (𝑚 · 𝑌) = ((0g𝑆) · 𝑌))
22 lveclmod 20283 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2322ad4antr 728 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑉 ∈ LMod)
24 simplr 765 . . . . . . . . . . 11 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌𝐵)
253, 24sylbi 216 . . . . . . . . . 10 (𝑋 𝑌𝑌𝐵)
26 eldifi 4057 . . . . . . . . . . 11 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
2726, 16eleq2s 2857 . . . . . . . . . 10 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
281, 25, 273syl 18 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉))
2928adantr 480 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑌 ∈ (Base‘𝑉))
30 eqid 2738 . . . . . . . . 9 (Base‘𝑉) = (Base‘𝑉)
31 prjspertr.x . . . . . . . . 9 · = ( ·𝑠𝑉)
32 eqid 2738 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
33 eqid 2738 . . . . . . . . 9 (0g𝑉) = (0g𝑉)
3430, 9, 31, 32, 33lmod0vs 20071 . . . . . . . 8 ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3523, 29, 34syl2anc 583 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3619, 21, 353eqtrd 2782 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (0g𝑉))
3718, 36mteqand 3047 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g𝑆))
38 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
39 eqid 2738 . . . . . 6 (invr𝑆) = (invr𝑆)
4038, 32, 39drnginvrcl 19923 . . . . 5 ((𝑆 ∈ DivRing ∧ 𝑚𝐾𝑚 ≠ (0g𝑆)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
4111, 12, 37, 40syl3anc 1369 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
42 oveq1 7262 . . . . . 6 (𝑛 = ((invr𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr𝑆)‘𝑚) · 𝑋))
4342eqeq2d 2749 . . . . 5 (𝑛 = ((invr𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
4443adantl 481 . . . 4 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑛 = ((invr𝑆)‘𝑚)) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
45 simpr 484 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌))
46 nelsn 4598 . . . . . . . 8 (𝑚 ≠ (0g𝑆) → ¬ 𝑚 ∈ {(0g𝑆)})
4737, 46syl 17 . . . . . . 7 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g𝑆)})
4812, 47eldifd 3894 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g𝑆)}))
49 eldifi 4057 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
5049, 16eleq2s 2857 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
511, 14, 503syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉))
5230, 31, 9, 38, 32, 39, 8, 48, 51, 28lvecinv 20290 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
5345, 52mpbid 231 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr𝑆)‘𝑚) · 𝑋))
5441, 44, 53rspcedvd 3555 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋))
552prjsprel 40364 . . 3 (𝑌 𝑋 ↔ ((𝑌𝐵𝑋𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋)))
567, 54, 55sylanbrc 582 . 2 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 𝑋)
57 simpr 484 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
583, 57sylbi 216 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5958adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
6056, 59r19.29a 3217 1 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cdif 3880  {csn 4558   class class class wbr 5070  {copab 5132  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lvec 20280
This theorem is referenced by:  prjsper  40368  0prjspn  40386
  Copyright terms: Public domain W3C validator