Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspersym Structured version   Visualization version   GIF version

Theorem prjspersym 42646
Description: The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspersym ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspersym
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 𝑌)
2 prjsprel.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
32prjsprel 42643 . . . . 5 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
4 pm3.22 459 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
54adantr 480 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
63, 5sylbi 217 . . . 4 (𝑋 𝑌 → (𝑌𝐵𝑋𝐵))
71, 6syl 17 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
8 oveq1 7353 . . . . 5 (𝑛 = ((invr𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr𝑆)‘𝑚) · 𝑋))
98eqeq2d 2742 . . . 4 (𝑛 = ((invr𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
10 simplll 774 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec)
11 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
1211lvecdrng 21040 . . . . . 6 (𝑉 ∈ LVec → 𝑆 ∈ DivRing)
1310, 12syl 17 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing)
14 simplr 768 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚𝐾)
15 simpll 766 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
163, 15sylbi 217 . . . . . . 7 (𝑋 𝑌𝑋𝐵)
17 eldifsni 4742 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
18 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
1917, 18eleq2s 2849 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
201, 16, 193syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g𝑉))
21 simplr 768 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (𝑚 · 𝑌))
22 simpr 484 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑚 = (0g𝑆))
2322oveq1d 7361 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → (𝑚 · 𝑌) = ((0g𝑆) · 𝑌))
24 lveclmod 21041 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2524ad4antr 732 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑉 ∈ LMod)
26 simplr 768 . . . . . . . . . . 11 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌𝐵)
273, 26sylbi 217 . . . . . . . . . 10 (𝑋 𝑌𝑌𝐵)
28 eldifi 4081 . . . . . . . . . . 11 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
2928, 18eleq2s 2849 . . . . . . . . . 10 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
301, 27, 293syl 18 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉))
3130adantr 480 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑌 ∈ (Base‘𝑉))
32 eqid 2731 . . . . . . . . 9 (Base‘𝑉) = (Base‘𝑉)
33 prjspertr.x . . . . . . . . 9 · = ( ·𝑠𝑉)
34 eqid 2731 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
35 eqid 2731 . . . . . . . . 9 (0g𝑉) = (0g𝑉)
3632, 11, 33, 34, 35lmod0vs 20829 . . . . . . . 8 ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3725, 31, 36syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3821, 23, 373eqtrd 2770 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (0g𝑉))
3920, 38mteqand 3019 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g𝑆))
40 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
41 eqid 2731 . . . . . 6 (invr𝑆) = (invr𝑆)
4240, 34, 41drnginvrcl 20669 . . . . 5 ((𝑆 ∈ DivRing ∧ 𝑚𝐾𝑚 ≠ (0g𝑆)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
4313, 14, 39, 42syl3anc 1373 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
44 simpr 484 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌))
45 nelsn 4619 . . . . . . . 8 (𝑚 ≠ (0g𝑆) → ¬ 𝑚 ∈ {(0g𝑆)})
4639, 45syl 17 . . . . . . 7 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g𝑆)})
4714, 46eldifd 3913 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g𝑆)}))
48 eldifi 4081 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
4948, 18eleq2s 2849 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
501, 16, 493syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉))
5132, 33, 11, 40, 34, 41, 10, 47, 50, 30lvecinv 21051 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
5244, 51mpbid 232 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr𝑆)‘𝑚) · 𝑋))
539, 43, 52rspcedvdw 3580 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋))
542prjsprel 42643 . . 3 (𝑌 𝑋 ↔ ((𝑌𝐵𝑋𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋)))
557, 53, 54sylanbrc 583 . 2 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 𝑋)
56 simpr 484 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
573, 56sylbi 217 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5857adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5955, 58r19.29a 3140 1 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  cdif 3899  {csn 4576   class class class wbr 5091  {copab 5153  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  invrcinvr 20306  DivRingcdr 20645  LModclmod 20794  LVecclvec 21037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-dvdsr 20276  df-unit 20277  df-invr 20307  df-drng 20647  df-lmod 20796  df-lvec 21038
This theorem is referenced by:  prjsper  42647  0prjspn  42667
  Copyright terms: Public domain W3C validator