Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspersym Structured version   Visualization version   GIF version

Theorem prjspersym 42562
Description: The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspersym ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspersym
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 𝑌)
2 prjsprel.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
32prjsprel 42559 . . . . 5 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
4 pm3.22 459 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
54adantr 480 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
63, 5sylbi 217 . . . 4 (𝑋 𝑌 → (𝑌𝐵𝑋𝐵))
71, 6syl 17 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
8 oveq1 7455 . . . . 5 (𝑛 = ((invr𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr𝑆)‘𝑚) · 𝑋))
98eqeq2d 2751 . . . 4 (𝑛 = ((invr𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
10 simplll 774 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec)
11 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
1211lvecdrng 21127 . . . . . 6 (𝑉 ∈ LVec → 𝑆 ∈ DivRing)
1310, 12syl 17 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing)
14 simplr 768 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚𝐾)
15 simpll 766 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
163, 15sylbi 217 . . . . . . 7 (𝑋 𝑌𝑋𝐵)
17 eldifsni 4815 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
18 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
1917, 18eleq2s 2862 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
201, 16, 193syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g𝑉))
21 simplr 768 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (𝑚 · 𝑌))
22 simpr 484 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑚 = (0g𝑆))
2322oveq1d 7463 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → (𝑚 · 𝑌) = ((0g𝑆) · 𝑌))
24 lveclmod 21128 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2524ad4antr 731 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑉 ∈ LMod)
26 simplr 768 . . . . . . . . . . 11 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌𝐵)
273, 26sylbi 217 . . . . . . . . . 10 (𝑋 𝑌𝑌𝐵)
28 eldifi 4154 . . . . . . . . . . 11 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
2928, 18eleq2s 2862 . . . . . . . . . 10 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
301, 27, 293syl 18 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉))
3130adantr 480 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑌 ∈ (Base‘𝑉))
32 eqid 2740 . . . . . . . . 9 (Base‘𝑉) = (Base‘𝑉)
33 prjspertr.x . . . . . . . . 9 · = ( ·𝑠𝑉)
34 eqid 2740 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
35 eqid 2740 . . . . . . . . 9 (0g𝑉) = (0g𝑉)
3632, 11, 33, 34, 35lmod0vs 20915 . . . . . . . 8 ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3725, 31, 36syl2anc 583 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3821, 23, 373eqtrd 2784 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (0g𝑉))
3920, 38mteqand 3039 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g𝑆))
40 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
41 eqid 2740 . . . . . 6 (invr𝑆) = (invr𝑆)
4240, 34, 41drnginvrcl 20775 . . . . 5 ((𝑆 ∈ DivRing ∧ 𝑚𝐾𝑚 ≠ (0g𝑆)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
4313, 14, 39, 42syl3anc 1371 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
44 simpr 484 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌))
45 nelsn 4688 . . . . . . . 8 (𝑚 ≠ (0g𝑆) → ¬ 𝑚 ∈ {(0g𝑆)})
4639, 45syl 17 . . . . . . 7 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g𝑆)})
4714, 46eldifd 3987 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g𝑆)}))
48 eldifi 4154 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
4948, 18eleq2s 2862 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
501, 16, 493syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉))
5132, 33, 11, 40, 34, 41, 10, 47, 50, 30lvecinv 21138 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
5244, 51mpbid 232 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr𝑆)‘𝑚) · 𝑋))
539, 43, 52rspcedvdw 3638 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋))
542prjsprel 42559 . . 3 (𝑌 𝑋 ↔ ((𝑌𝐵𝑋𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋)))
557, 53, 54sylanbrc 582 . 2 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 𝑋)
56 simpr 484 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
573, 56sylbi 217 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5857adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5955, 58r19.29a 3168 1 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  cdif 3973  {csn 4648   class class class wbr 5166  {copab 5228  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  invrcinvr 20413  DivRingcdr 20751  LModclmod 20880  LVecclvec 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-drng 20753  df-lmod 20882  df-lvec 21125
This theorem is referenced by:  prjsper  42563  0prjspn  42583
  Copyright terms: Public domain W3C validator