Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prjspersym Structured version   Visualization version   GIF version

Theorem prjspersym 42728
Description: The relation in ℙ𝕣𝕠𝕛 is symmetric. (Contributed by Steven Nguyen, 1-May-2023.)
Hypotheses
Ref Expression
prjsprel.1 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
prjspertr.b 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
prjspertr.s 𝑆 = (Scalar‘𝑉)
prjspertr.x · = ( ·𝑠𝑉)
prjspertr.k 𝐾 = (Base‘𝑆)
Assertion
Ref Expression
prjspersym ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦,𝑙   𝑥,𝑌,𝑦,𝑙   𝑥,𝐾,𝑦,𝑙   𝑥, · ,𝑦,𝑙
Allowed substitution hints:   𝐵(𝑙)   (𝑥,𝑦,𝑙)   𝑆(𝑥,𝑦,𝑙)   𝑉(𝑥,𝑦,𝑙)

Proof of Theorem prjspersym
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpllr 775 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 𝑌)
2 prjsprel.1 . . . . . 6 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ ∃𝑙𝐾 𝑥 = (𝑙 · 𝑦))}
32prjsprel 42725 . . . . 5 (𝑋 𝑌 ↔ ((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)))
4 pm3.22 459 . . . . . 6 ((𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑋𝐵))
54adantr 480 . . . . 5 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
63, 5sylbi 217 . . . 4 (𝑋 𝑌 → (𝑌𝐵𝑋𝐵))
71, 6syl 17 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌𝐵𝑋𝐵))
8 oveq1 7361 . . . . 5 (𝑛 = ((invr𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr𝑆)‘𝑚) · 𝑋))
98eqeq2d 2744 . . . 4 (𝑛 = ((invr𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
10 simplll 774 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec)
11 prjspertr.s . . . . . . 7 𝑆 = (Scalar‘𝑉)
1211lvecdrng 21043 . . . . . 6 (𝑉 ∈ LVec → 𝑆 ∈ DivRing)
1310, 12syl 17 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing)
14 simplr 768 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚𝐾)
15 simpll 766 . . . . . . . 8 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋𝐵)
163, 15sylbi 217 . . . . . . 7 (𝑋 𝑌𝑋𝐵)
17 eldifsni 4743 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ≠ (0g𝑉))
18 prjspertr.b . . . . . . . 8 𝐵 = ((Base‘𝑉) ∖ {(0g𝑉)})
1917, 18eleq2s 2851 . . . . . . 7 (𝑋𝐵𝑋 ≠ (0g𝑉))
201, 16, 193syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g𝑉))
21 simplr 768 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (𝑚 · 𝑌))
22 simpr 484 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑚 = (0g𝑆))
2322oveq1d 7369 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → (𝑚 · 𝑌) = ((0g𝑆) · 𝑌))
24 lveclmod 21044 . . . . . . . . 9 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2524ad4antr 732 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑉 ∈ LMod)
26 simplr 768 . . . . . . . . . . 11 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌𝐵)
273, 26sylbi 217 . . . . . . . . . 10 (𝑋 𝑌𝑌𝐵)
28 eldifi 4080 . . . . . . . . . . 11 (𝑌 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑌 ∈ (Base‘𝑉))
2928, 18eleq2s 2851 . . . . . . . . . 10 (𝑌𝐵𝑌 ∈ (Base‘𝑉))
301, 27, 293syl 18 . . . . . . . . 9 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉))
3130adantr 480 . . . . . . . 8 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑌 ∈ (Base‘𝑉))
32 eqid 2733 . . . . . . . . 9 (Base‘𝑉) = (Base‘𝑉)
33 prjspertr.x . . . . . . . . 9 · = ( ·𝑠𝑉)
34 eqid 2733 . . . . . . . . 9 (0g𝑆) = (0g𝑆)
35 eqid 2733 . . . . . . . . 9 (0g𝑉) = (0g𝑉)
3632, 11, 33, 34, 35lmod0vs 20832 . . . . . . . 8 ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3725, 31, 36syl2anc 584 . . . . . . 7 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → ((0g𝑆) · 𝑌) = (0g𝑉))
3821, 23, 373eqtrd 2772 . . . . . 6 (((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g𝑆)) → 𝑋 = (0g𝑉))
3920, 38mteqand 3020 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g𝑆))
40 prjspertr.k . . . . . 6 𝐾 = (Base‘𝑆)
41 eqid 2733 . . . . . 6 (invr𝑆) = (invr𝑆)
4240, 34, 41drnginvrcl 20672 . . . . 5 ((𝑆 ∈ DivRing ∧ 𝑚𝐾𝑚 ≠ (0g𝑆)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
4313, 14, 39, 42syl3anc 1373 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr𝑆)‘𝑚) ∈ 𝐾)
44 simpr 484 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌))
45 nelsn 4620 . . . . . . . 8 (𝑚 ≠ (0g𝑆) → ¬ 𝑚 ∈ {(0g𝑆)})
4639, 45syl 17 . . . . . . 7 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g𝑆)})
4714, 46eldifd 3909 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g𝑆)}))
48 eldifi 4080 . . . . . . . 8 (𝑋 ∈ ((Base‘𝑉) ∖ {(0g𝑉)}) → 𝑋 ∈ (Base‘𝑉))
4948, 18eleq2s 2851 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝑉))
501, 16, 493syl 18 . . . . . 6 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉))
5132, 33, 11, 40, 34, 41, 10, 47, 50, 30lvecinv 21054 . . . . 5 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr𝑆)‘𝑚) · 𝑋)))
5244, 51mpbid 232 . . . 4 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr𝑆)‘𝑚) · 𝑋))
539, 43, 52rspcedvdw 3576 . . 3 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋))
542prjsprel 42725 . . 3 (𝑌 𝑋 ↔ ((𝑌𝐵𝑋𝐵) ∧ ∃𝑛𝐾 𝑌 = (𝑛 · 𝑋)))
557, 53, 54sylanbrc 583 . 2 ((((𝑉 ∈ LVec ∧ 𝑋 𝑌) ∧ 𝑚𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 𝑋)
56 simpr 484 . . . 4 (((𝑋𝐵𝑌𝐵) ∧ ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
573, 56sylbi 217 . . 3 (𝑋 𝑌 → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5857adantl 481 . 2 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → ∃𝑚𝐾 𝑋 = (𝑚 · 𝑌))
5955, 58r19.29a 3141 1 ((𝑉 ∈ LVec ∧ 𝑋 𝑌) → 𝑌 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  {csn 4577   class class class wbr 5095  {copab 5157  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347  invrcinvr 20309  DivRingcdr 20648  LModclmod 20797  LVecclvec 21040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-drng 20650  df-lmod 20799  df-lvec 21041
This theorem is referenced by:  prjsper  42729  0prjspn  42749
  Copyright terms: Public domain W3C validator