Step | Hyp | Ref
| Expression |
1 | | simpllr 775 |
. . . 4
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∼ 𝑌) |
2 | | prjsprel.1 |
. . . . . 6
⊢ ∼ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ ∃𝑙 ∈ 𝐾 𝑥 = (𝑙 · 𝑦))} |
3 | 2 | prjsprel 42559 |
. . . . 5
⊢ (𝑋 ∼ 𝑌 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌))) |
4 | | pm3.22 459 |
. . . . . 6
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
5 | 4 | adantr 480 |
. . . . 5
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
6 | 3, 5 | sylbi 217 |
. . . 4
⊢ (𝑋 ∼ 𝑌 → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
7 | 1, 6 | syl 17 |
. . 3
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
8 | | oveq1 7455 |
. . . . 5
⊢ (𝑛 = ((invr‘𝑆)‘𝑚) → (𝑛 · 𝑋) = (((invr‘𝑆)‘𝑚) · 𝑋)) |
9 | 8 | eqeq2d 2751 |
. . . 4
⊢ (𝑛 = ((invr‘𝑆)‘𝑚) → (𝑌 = (𝑛 · 𝑋) ↔ 𝑌 = (((invr‘𝑆)‘𝑚) · 𝑋))) |
10 | | simplll 774 |
. . . . . 6
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑉 ∈ LVec) |
11 | | prjspertr.s |
. . . . . . 7
⊢ 𝑆 = (Scalar‘𝑉) |
12 | 11 | lvecdrng 21127 |
. . . . . 6
⊢ (𝑉 ∈ LVec → 𝑆 ∈
DivRing) |
13 | 10, 12 | syl 17 |
. . . . 5
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑆 ∈ DivRing) |
14 | | simplr 768 |
. . . . 5
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ 𝐾) |
15 | | simpll 766 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ 𝐵) |
16 | 3, 15 | sylbi 217 |
. . . . . . 7
⊢ (𝑋 ∼ 𝑌 → 𝑋 ∈ 𝐵) |
17 | | eldifsni 4815 |
. . . . . . . 8
⊢ (𝑋 ∈ ((Base‘𝑉) ∖
{(0g‘𝑉)})
→ 𝑋 ≠
(0g‘𝑉)) |
18 | | prjspertr.b |
. . . . . . . 8
⊢ 𝐵 = ((Base‘𝑉) ∖
{(0g‘𝑉)}) |
19 | 17, 18 | eleq2s 2862 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑋 ≠ (0g‘𝑉)) |
20 | 1, 16, 19 | 3syl 18 |
. . . . . 6
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ≠ (0g‘𝑉)) |
21 | | simplr 768 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → 𝑋 = (𝑚 · 𝑌)) |
22 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → 𝑚 = (0g‘𝑆)) |
23 | 22 | oveq1d 7463 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → (𝑚 · 𝑌) = ((0g‘𝑆) · 𝑌)) |
24 | | lveclmod 21128 |
. . . . . . . . 9
⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) |
25 | 24 | ad4antr 731 |
. . . . . . . 8
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → 𝑉 ∈ LMod) |
26 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ 𝐵) |
27 | 3, 26 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑋 ∼ 𝑌 → 𝑌 ∈ 𝐵) |
28 | | eldifi 4154 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ ((Base‘𝑉) ∖
{(0g‘𝑉)})
→ 𝑌 ∈
(Base‘𝑉)) |
29 | 28, 18 | eleq2s 2862 |
. . . . . . . . . 10
⊢ (𝑌 ∈ 𝐵 → 𝑌 ∈ (Base‘𝑉)) |
30 | 1, 27, 29 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∈ (Base‘𝑉)) |
31 | 30 | adantr 480 |
. . . . . . . 8
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → 𝑌 ∈ (Base‘𝑉)) |
32 | | eqid 2740 |
. . . . . . . . 9
⊢
(Base‘𝑉) =
(Base‘𝑉) |
33 | | prjspertr.x |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝑉) |
34 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘𝑆) = (0g‘𝑆) |
35 | | eqid 2740 |
. . . . . . . . 9
⊢
(0g‘𝑉) = (0g‘𝑉) |
36 | 32, 11, 33, 34, 35 | lmod0vs 20915 |
. . . . . . . 8
⊢ ((𝑉 ∈ LMod ∧ 𝑌 ∈ (Base‘𝑉)) →
((0g‘𝑆)
·
𝑌) =
(0g‘𝑉)) |
37 | 25, 31, 36 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → ((0g‘𝑆) · 𝑌) = (0g‘𝑉)) |
38 | 21, 23, 37 | 3eqtrd 2784 |
. . . . . 6
⊢
(((((𝑉 ∈ LVec
∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) ∧ 𝑚 = (0g‘𝑆)) → 𝑋 = (0g‘𝑉)) |
39 | 20, 38 | mteqand 3039 |
. . . . 5
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ≠ (0g‘𝑆)) |
40 | | prjspertr.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝑆) |
41 | | eqid 2740 |
. . . . . 6
⊢
(invr‘𝑆) = (invr‘𝑆) |
42 | 40, 34, 41 | drnginvrcl 20775 |
. . . . 5
⊢ ((𝑆 ∈ DivRing ∧ 𝑚 ∈ 𝐾 ∧ 𝑚 ≠ (0g‘𝑆)) → ((invr‘𝑆)‘𝑚) ∈ 𝐾) |
43 | 13, 14, 39, 42 | syl3anc 1371 |
. . . 4
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ((invr‘𝑆)‘𝑚) ∈ 𝐾) |
44 | | simpr 484 |
. . . . 5
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 = (𝑚 · 𝑌)) |
45 | | nelsn 4688 |
. . . . . . . 8
⊢ (𝑚 ≠ (0g‘𝑆) → ¬ 𝑚 ∈
{(0g‘𝑆)}) |
46 | 39, 45 | syl 17 |
. . . . . . 7
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ¬ 𝑚 ∈ {(0g‘𝑆)}) |
47 | 14, 46 | eldifd 3987 |
. . . . . 6
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑚 ∈ (𝐾 ∖ {(0g‘𝑆)})) |
48 | | eldifi 4154 |
. . . . . . . 8
⊢ (𝑋 ∈ ((Base‘𝑉) ∖
{(0g‘𝑉)})
→ 𝑋 ∈
(Base‘𝑉)) |
49 | 48, 18 | eleq2s 2862 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝑉)) |
50 | 1, 16, 49 | 3syl 18 |
. . . . . 6
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑋 ∈ (Base‘𝑉)) |
51 | 32, 33, 11, 40, 34, 41, 10, 47, 50, 30 | lvecinv 21138 |
. . . . 5
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → (𝑋 = (𝑚 · 𝑌) ↔ 𝑌 = (((invr‘𝑆)‘𝑚) · 𝑋))) |
52 | 44, 51 | mpbid 232 |
. . . 4
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 = (((invr‘𝑆)‘𝑚) · 𝑋)) |
53 | 9, 43, 52 | rspcedvdw 3638 |
. . 3
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑋)) |
54 | 2 | prjsprel 42559 |
. . 3
⊢ (𝑌 ∼ 𝑋 ↔ ((𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ ∃𝑛 ∈ 𝐾 𝑌 = (𝑛 · 𝑋))) |
55 | 7, 53, 54 | sylanbrc 582 |
. 2
⊢ ((((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) ∧ 𝑚 ∈ 𝐾) ∧ 𝑋 = (𝑚 · 𝑌)) → 𝑌 ∼ 𝑋) |
56 | | simpr 484 |
. . . 4
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) |
57 | 3, 56 | sylbi 217 |
. . 3
⊢ (𝑋 ∼ 𝑌 → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) |
58 | 57 | adantl 481 |
. 2
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) → ∃𝑚 ∈ 𝐾 𝑋 = (𝑚 · 𝑌)) |
59 | 55, 58 | r19.29a 3168 |
1
⊢ ((𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌) → 𝑌 ∼ 𝑋) |